Spaces:
Running
Running
File size: 12,165 Bytes
c00b86e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import gradio as gr
import torch
import numpy as np
from PIL import Image
import os
# ๋ชจ๋ธ import๋ค
try:
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline, UniPCMultistepScheduler
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
from controlnet_aux import MLSDdetector
MLSD_AVAILABLE = True
except ImportError as e:
print(f"์ผ๋ถ ๋ผ์ด๋ธ๋ฌ๋ฆฌ ๋ก๋ฉ ์คํจ: {e}")
MLSD_AVAILABLE = False
class SpacelyFurnitureDesigner:
def __init__(self):
self.pipe = None
self.seg_processor = None
self.segmentor = None
self.mlsd_processor = None
# ํ์ฌ์ฉ ํ๋กฌํํธ ํ
ํ๋ฆฟ
self.office_templates = {
"๊ฐ์ธ์ฌ๋ฌด์ค": "modern private office with executive desk, ergonomic chair, bookshelf, and professional lighting",
"ํ์์ค": "professional conference room with large meeting table, comfortable chairs, whiteboard, and corporate lighting",
"ํด๊ฒ์ค": "corporate break room with comfortable seating, coffee table, plants, and relaxing atmosphere",
"์คํ์คํผ์ค": "open office space with multiple workstations, modern desks, office chairs, and collaborative areas",
"๋ฆฌ์
์
": "elegant reception area with reception desk, waiting chairs, company logo wall, and welcoming ambiance",
"CEO์ค": "luxury executive office with premium wooden desk, leather chair, awards display, and elegant lighting"
}
self.quality_suffix = "professional interior design, corporate style, clean, modern, functional, well-lit, 4K, high quality"
def load_models(self):
"""๋ชจ๋ธ ์ง์ฐ ๋ก๋ฉ"""
if self.pipe is None:
print("๐ AI ๋ชจ๋ธ ๋ก๋ฉ ์ค...")
try:
if MLSD_AVAILABLE and torch.cuda.is_available():
# ์ ์ฒด ControlNet ์ค์
controlnet = [
ControlNetModel.from_pretrained("BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16),
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd", torch_dtype=torch.float16)
]
self.mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
else:
# ์ธ๊ทธ๋ฉํ
์ด์
๋ง ์ฌ์ฉ
controlnet = ControlNetModel.from_pretrained("BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16)
# ๋ฉ์ธ ํ์ดํ๋ผ์ธ
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"SG161222/Realistic_Vision_V3.0_VAE",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
if torch.cuda.is_available():
self.pipe = self.pipe.to("cuda")
try:
self.pipe.enable_xformers_memory_efficient_attention()
except:
pass
# ์ธ๊ทธ๋ฉํ
์ด์
๋ชจ๋ธ
self.seg_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b5-finetuned-ade-640-640")
self.segmentor = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-ade-640-640")
print("โ
๋ชจ๋ธ ๋ก๋ฉ ์๋ฃ!")
except Exception as e:
print(f"โ ๋ชจ๋ธ ๋ก๋ฉ ์คํจ: {e}")
return False
return True
def resize_dimensions(self, dimensions, target_size=768):
"""๋น์จ ์ ์งํ๋ฉฐ ๋ฆฌ์ฌ์ด์ฆ"""
width, height = dimensions
if width < target_size and height < target_size:
return dimensions
if width > height:
aspect_ratio = height / width
return (target_size, int(target_size * aspect_ratio))
else:
aspect_ratio = width / height
return (int(target_size * aspect_ratio), target_size)
def create_simple_mask(self, image):
"""๊ฐ๋จํ ๋ง์คํฌ ์์ฑ"""
# ์ ์ฒด ์ด๋ฏธ์ง๋ฅผ ๋ณ๊ฒฝ ๋์์ผ๋ก ์ค์
mask = Image.new('RGB', image.size, (255, 255, 255))
return image, mask
def design_space(self, input_image, space_type, custom_prompt="", num_steps=30, guidance_scale=12):
"""๊ณต๊ฐ ๋์์ธ ์์ฑ ๋ฉ์ธ ํจ์"""
if input_image is None:
return None, "โ ์ด๋ฏธ์ง๋ฅผ ์
๋ก๋ํด์ฃผ์ธ์!"
# ๋ชจ๋ธ ๋ก๋ฉ
if not self.load_models():
return None, "โ AI ๋ชจ๋ธ ๋ก๋ฉ์ ์คํจํ์ต๋๋ค."
try:
# ํ๋กฌํํธ ๊ตฌ์ฑ
if custom_prompt.strip():
base_prompt = custom_prompt
else:
base_prompt = self.office_templates.get(space_type, self.office_templates["๊ฐ์ธ์ฌ๋ฌด์ค"])
full_prompt = f"{base_prompt}, {self.quality_suffix}"
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ
orig_w, orig_h = input_image.size
new_width, new_height = self.resize_dimensions(input_image.size, 768)
resized_image = input_image.resize((new_width, new_height))
# ๋ง์คํฌ ์์ฑ
seg_image, mask_image = self.create_simple_mask(resized_image)
# ControlNet ์ด๋ฏธ์ง ์ค๋น
if MLSD_AVAILABLE and self.mlsd_processor:
mlsd_image = self.mlsd_processor(resized_image)
mlsd_image = mlsd_image.resize(resized_image.size)
control_images = [seg_image, mlsd_image]
controlnet_conditioning_scale = [0.4, 0.2]
control_guidance_start = [0, 0.1]
control_guidance_end = [0.5, 0.25]
else:
control_images = seg_image
controlnet_conditioning_scale = 0.4
control_guidance_start = 0
control_guidance_end = 0.5
# AI ์ด๋ฏธ์ง ์์ฑ
result = self.pipe(
prompt=full_prompt,
negative_prompt="lowres, watermark, blurry, unprofessional, cluttered, outdated furniture, bad quality",
num_inference_steps=num_steps,
strength=0.8,
guidance_scale=guidance_scale,
image=resized_image,
mask_image=mask_image,
control_image=control_images,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end
).images[0]
# ์๋ณธ ํฌ๊ธฐ๋ก ๋ณต์
final_image = result.resize((orig_w, orig_h), Image.Resampling.LANCZOS)
success_msg = f"โ
{space_type} ๋์์ธ ์๋ฃ!\n๐ ์ฌ์ฉ๋ ํ๋กฌํํธ: {full_prompt[:100]}..."
return final_image, success_msg
except Exception as e:
error_msg = f"โ ๋์์ธ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}"
print(error_msg)
return None, error_msg
# ์ ์ญ ๋์์ด๋ ์ธ์คํด์ค
designer = SpacelyFurnitureDesigner()
def create_ui():
"""Gradio UI ์์ฑ"""
with gr.Blocks(
title="๐ข Spacely AI ๊ฐ๊ตฌ ๋ฐฐ์น ๋์์ด๋",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.title {
text-align: center;
color: #2D3748;
margin-bottom: 20px;
}
"""
) as demo:
gr.HTML("""
<div class="title">
<h1>๐ข Spacely AI ๊ฐ๊ตฌ ๋ฐฐ์น ๋์์ด๋</h1>
<p>๋น ๋ฐฉ ์ฌ์ง์ ์
๋ก๋ํ๋ฉด AI๊ฐ ์ ๋ฌธ์ ์ธ ์คํผ์ค ๊ณต๊ฐ์ผ๋ก ๋์์ธํด๋๋ฆฝ๋๋ค</p>
</div>
""")
with gr.Row():
# ์
๋ ฅ ์ปฌ๋ผ
with gr.Column(scale=1):
gr.HTML("<h3>๐ ์
๋ ฅ ์ค์ </h3>")
input_image = gr.Image(
label="๋น๋ฐฉ ์ด๋ฏธ์ง ์
๋ก๋",
type="pil",
height=300
)
space_type = gr.Dropdown(
choices=list(designer.office_templates.keys()),
label="๊ณต๊ฐ ํ์
์ ํ",
value="๊ฐ์ธ์ฌ๋ฌด์ค"
)
custom_prompt = gr.Textbox(
label="์ปค์คํ
ํ๋กฌํํธ (์ ํ์ฌํญ)",
placeholder="์: minimalist CEO office with wooden desk...",
lines=3
)
with gr.Row():
num_steps = gr.Slider(
minimum=10,
maximum=50,
value=30,
step=5,
label="์์ฑ ํ์ง (๋์์๋ก ๋๋ฆผ)"
)
guidance_scale = gr.Slider(
minimum=5,
maximum=20,
value=12,
step=1,
label="ํ๋กฌํํธ ๋ฐ์๋"
)
generate_btn = gr.Button(
"๐จ AI ๋์์ธ ์์ฑ",
variant="primary",
size="lg"
)
# ์ถ๋ ฅ ์ปฌ๋ผ
with gr.Column(scale=1):
gr.HTML("<h3>โจ ๋์์ธ ๊ฒฐ๊ณผ</h3>")
output_image = gr.Image(
label="AI๊ฐ ๋์์ธํ ์คํผ์ค",
height=300
)
output_text = gr.Textbox(
label="์์ฑ ๊ฒฐ๊ณผ",
lines=4,
max_lines=8
)
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #F7FAFC; border-radius: 10px;">
<h4>๐ก ์ฌ์ฉ ํ</h4>
<ul>
<li>๊น๋ํ ๋น๋ฐฉ ์ฌ์ง์ผ์๋ก ์ข์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ต๋๋ค</li>
<li>์ปค์คํ
ํ๋กฌํํธ๋ก ์ํ๋ ๊ฐ๊ตฌ๋ ์คํ์ผ์ ์ง์ ํ ์ ์์ต๋๋ค</li>
<li>์์ฑ ํ์ง์ ๋์ด๋ฉด ๋ ์ ๊ตํ ๊ฒฐ๊ณผ๋ฅผ ์ป์ง๋ง ์๊ฐ์ด ์ค๋ ๊ฑธ๋ฆฝ๋๋ค</li>
</ul>
</div>
""")
# ์ด๋ฒคํธ ์ฐ๊ฒฐ
generate_btn.click(
fn=designer.design_space,
inputs=[input_image, space_type, custom_prompt, num_steps, guidance_scale],
outputs=[output_image, output_text]
)
# ์์ ์ด๋ฏธ์ง๋ค
gr.HTML("<h3>๐ธ ์์ ๊ฒฐ๊ณผ</h3>")
with gr.Row():
gr.Examples(
examples=[
["๊ฐ์ธ์ฌ๋ฌด์ค", "modern executive office with wooden desk"],
["ํ์์ค", "professional conference room for 10 people"],
["ํด๊ฒ์ค", "comfortable break room with plants and coffee area"],
],
inputs=[space_type, custom_prompt],
label="๋น ๋ฅธ ์ค์ ์์"
)
return demo
# ์ฑ ์คํ
if __name__ == "__main__":
demo = create_ui()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=True # ๊ณต๊ฐ URL ์์ฑ
) |