import gradio as gr import torchaudio import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Load model and processor processor = Wav2Vec2Processor.from_pretrained("Mustafaa4a/ASR-Somali") model = Wav2Vec2ForCTC.from_pretrained("Mustafaa4a/ASR-Somali") def transcribe(audio): waveform, sample_rate = torchaudio.load(audio) if sample_rate != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) waveform = resampler(waveform) inputs = processor(waveform.squeeze(), sampling_rate=16000, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.decode(predicted_ids[0]) return transcription # Gradio Interface setup interface = gr.Interface( fn=transcribe, inputs=gr.Audio(type="filepath", label="Upload Somali Audio (.wav)"), outputs=gr.Textbox(label="Transcription"), title="Somali-speech_to_text", description="Upload a Somali speech audio file (mono WAV, 16kHz) and get the text transcription." ) # Launch the Gradio app and make it publicly available by using 'share=True' interface.launch() # Don't use share=True in Hugging Face Spaces