Spaces:
Running
Running
import gradio as gr | |
import torchaudio | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
# Load model and processor | |
processor = Wav2Vec2Processor.from_pretrained("Mustafaa4a/ASR-Somali") | |
model = Wav2Vec2ForCTC.from_pretrained("Mustafaa4a/ASR-Somali") | |
def transcribe(audio): | |
waveform, sample_rate = torchaudio.load(audio) | |
if sample_rate != 16000: | |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) | |
waveform = resampler(waveform) | |
inputs = processor(waveform.squeeze(), sampling_rate=16000, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.decode(predicted_ids[0]) | |
return transcription | |
# Gradio Interface setup | |
interface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(type="filepath", label="Upload Somali Audio (.wav)"), | |
outputs=gr.Textbox(label="Transcription"), | |
title="Somali-speech_to_text", | |
description="Upload a Somali speech audio file (mono WAV, 16kHz) and get the text transcription." | |
) | |
# Launch the Gradio app and make it publicly available by using 'share=True' | |
interface.launch() # Don't use share=True in Hugging Face Spaces | |