Spaces:
Sleeping
Sleeping
import argparse | |
import sys | |
import torch | |
from multiprocessing import cpu_count | |
class Config: | |
""" | |
The code focuses on adapting the configuration based on available | |
hardware resources and specified command-line arguments, | |
aiming to optimize the performance and capabilities of the voice conversion process. | |
""" | |
def __init__(self): | |
""" | |
Calls the arg_parse() and device_config() methods to set up configuration based on command-line arguments | |
and available hardware. | |
Returns: None | |
""" | |
self.device = "cuda:0" | |
self.is_half = True | |
self.n_cpu = 0 | |
self.gpu_name = None | |
self.gpu_mem = None | |
( | |
self.colab, | |
self.api, | |
self.unsupported | |
) = self.arg_parse() | |
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | |
def arg_parse() -> tuple: | |
""" | |
Uses the argparse library to parse command-line arguments. | |
Three boolean arguments are defined: --colab, --api, and --unsupported. | |
Returns: a tuple indicating whether each argument is specified or not. | |
""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--colab", action="store_true", help="Launch in colab") | |
parser.add_argument("--api", action="store_true", help="Launch with api") | |
parser.add_argument("--unsupported", action="store_true", help="Enable unsupported feature") | |
cmd_opts = parser.parse_args() | |
return ( | |
cmd_opts.colab, | |
cmd_opts.api, | |
cmd_opts.unsupported | |
) | |
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+. | |
# check `getattr` and try it for compatibility | |
def has_mps() -> bool: | |
""" | |
Determines if Multi-Process Service (MPS) is available in the current PyTorch backend. | |
If MPS is available, it checks whether it can be used by trying to move a tensor to the "mps" device. | |
Returns a boolean indicating MPS support. | |
""" | |
if not torch.backends.mps.is_available(): | |
return False | |
try: | |
torch.zeros(1).to(torch.device("mps")) | |
return True | |
except Exception: | |
return False | |
def device_config(self) -> tuple: | |
""" | |
Checks if a CUDA-compatible GPU is available. | |
If a compatible GPU is found: | |
Determines the GPU's name and memory capacity. | |
Adjusts the is_half parameter based on the GPU's characteristics. | |
If no compatible GPU is found and MPS is available, configures the device to use MPS. | |
If no compatible GPU and MPS support, configures the device to use CPU. | |
Determines the number of available CPU cores (n_cpu). | |
Based on the is_half value and GPU memory capacity, configures several variables related to voice conversion, | |
such as x_pad, x_query, x_center, and x_max. | |
""" | |
if torch.cuda.is_available(): | |
i_device = int(self.device.split(":")[-1]) | |
self.gpu_name = torch.cuda.get_device_name(i_device) | |
if ( | |
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | |
or "P40" in self.gpu_name.upper() | |
or "1060" in self.gpu_name | |
or "1070" in self.gpu_name | |
or "1080" in self.gpu_name | |
): | |
print("INFO: Found GPU", self.gpu_name, ", force to fp32") | |
self.is_half = False | |
else: | |
print("INFO: Found GPU", self.gpu_name) | |
self.gpu_mem = int( | |
torch.cuda.get_device_properties(i_device).total_memory | |
/ 1024 | |
/ 1024 | |
/ 1024 | |
+ 0.4 | |
) | |
elif self.has_mps(): | |
print("INFO: No supported Nvidia GPU found, use MPS instead") | |
self.device = "mps" | |
self.is_half = False | |
else: | |
print("INFO: No supported Nvidia GPU found, use CPU instead") | |
self.device = "cpu" | |
self.is_half = False | |
if self.n_cpu == 0: | |
self.n_cpu = cpu_count() | |
if self.is_half: | |
# 6G显存配置 | |
x_pad = 3 | |
x_query = 10 | |
x_center = 60 | |
x_max = 65 | |
else: | |
# 5G显存配置 | |
x_pad = 1 | |
x_query = 6 | |
x_center = 38 | |
x_max = 41 | |
if self.gpu_mem != None and self.gpu_mem <= 4: | |
x_pad = 1 | |
x_query = 5 | |
x_center = 30 | |
x_max = 32 | |
return x_pad, x_query, x_center, x_max | |