Spaces:
Runtime error
Runtime error
Update modules/translation_model.py
Browse files- modules/translation_model.py +35 -16
modules/translation_model.py
CHANGED
@@ -1,39 +1,58 @@
|
|
1 |
import torch
|
2 |
-
from transformers import
|
3 |
import logging
|
|
|
4 |
|
5 |
class TranslationModel:
|
6 |
def __init__(self, cache_dir="models/"):
|
7 |
self.device = torch.device("cpu")
|
8 |
logging.info("Using CPU for translations")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
self.model.eval()
|
24 |
|
25 |
def translate(self, text: str, source_lang: str, target_lang: str) -> str:
|
26 |
try:
|
27 |
self.tokenizer.src_lang = source_lang
|
28 |
-
encoded = self.tokenizer(text, return_tensors="pt")
|
29 |
|
30 |
with torch.no_grad():
|
31 |
generated = self.model.generate(
|
32 |
**encoded,
|
33 |
forced_bos_token_id=self.tokenizer.get_lang_id(target_lang),
|
34 |
-
max_length=128
|
|
|
|
|
35 |
)
|
36 |
|
37 |
return self.tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
|
38 |
except Exception as e:
|
|
|
39 |
return f"Translation error: {str(e)}"
|
|
|
1 |
import torch
|
2 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
3 |
import logging
|
4 |
+
import os
|
5 |
|
6 |
class TranslationModel:
|
7 |
def __init__(self, cache_dir="models/"):
|
8 |
self.device = torch.device("cpu")
|
9 |
logging.info("Using CPU for translations")
|
10 |
|
11 |
+
# Ensure cache directory exists
|
12 |
+
os.makedirs(cache_dir, exist_ok=True)
|
13 |
+
|
14 |
+
model_name = "facebook/m2m100_418M" # Smaller model
|
15 |
+
try:
|
16 |
+
# Try to load from local cache first
|
17 |
+
self.tokenizer = M2M100Tokenizer.from_pretrained(
|
18 |
+
cache_dir,
|
19 |
+
local_files_only=True
|
20 |
+
)
|
21 |
+
self.model = M2M100ForConditionalGeneration.from_pretrained(
|
22 |
+
cache_dir,
|
23 |
+
local_files_only=True,
|
24 |
+
device_map="cpu",
|
25 |
+
low_cpu_mem_usage=True
|
26 |
+
)
|
27 |
+
except:
|
28 |
+
# If not in cache, download and save
|
29 |
+
self.tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
30 |
+
self.model = M2M100ForConditionalGeneration.from_pretrained(
|
31 |
+
model_name,
|
32 |
+
device_map="cpu",
|
33 |
+
low_cpu_mem_usage=True
|
34 |
+
)
|
35 |
+
# Save for offline use
|
36 |
+
self.tokenizer.save_pretrained(cache_dir)
|
37 |
+
self.model.save_pretrained(cache_dir)
|
38 |
+
|
39 |
self.model.eval()
|
40 |
|
41 |
def translate(self, text: str, source_lang: str, target_lang: str) -> str:
|
42 |
try:
|
43 |
self.tokenizer.src_lang = source_lang
|
44 |
+
encoded = self.tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
45 |
|
46 |
with torch.no_grad():
|
47 |
generated = self.model.generate(
|
48 |
**encoded,
|
49 |
forced_bos_token_id=self.tokenizer.get_lang_id(target_lang),
|
50 |
+
max_length=128,
|
51 |
+
num_beams=2,
|
52 |
+
length_penalty=0.6
|
53 |
)
|
54 |
|
55 |
return self.tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
|
56 |
except Exception as e:
|
57 |
+
logging.error(f"Translation error: {str(e)}")
|
58 |
return f"Translation error: {str(e)}"
|