Spaces:
Runtime error
Runtime error
Update modules/translation_model.py
Browse files- modules/translation_model.py +15 -8
modules/translation_model.py
CHANGED
|
@@ -4,27 +4,34 @@ import logging
|
|
| 4 |
|
| 5 |
class TranslationModel:
|
| 6 |
def __init__(self, cache_dir="models/"):
|
| 7 |
-
self.device = torch.device("
|
| 8 |
-
|
| 9 |
-
logging.warning("GPU not found, using CPU. Translation will be slower.")
|
| 10 |
|
| 11 |
self.model_name = "facebook/m2m100_1.2B"
|
| 12 |
-
self.tokenizer = M2M100Tokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
self.model = M2M100ForConditionalGeneration.from_pretrained(
|
| 14 |
self.model_name,
|
| 15 |
-
cache_dir=cache_dir
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
self.model.eval()
|
| 18 |
|
| 19 |
def translate(self, text: str, source_lang: str, target_lang: str) -> str:
|
| 20 |
try:
|
| 21 |
self.tokenizer.src_lang = source_lang
|
| 22 |
-
encoded = self.tokenizer(text, return_tensors="pt")
|
| 23 |
|
| 24 |
with torch.no_grad():
|
| 25 |
generated = self.model.generate(
|
| 26 |
**encoded,
|
| 27 |
-
forced_bos_token_id=self.tokenizer.get_lang_id(target_lang)
|
|
|
|
| 28 |
)
|
| 29 |
|
| 30 |
return self.tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
|
|
|
|
| 4 |
|
| 5 |
class TranslationModel:
|
| 6 |
def __init__(self, cache_dir="models/"):
|
| 7 |
+
self.device = torch.device("cpu")
|
| 8 |
+
logging.info("Using CPU for translations")
|
|
|
|
| 9 |
|
| 10 |
self.model_name = "facebook/m2m100_1.2B"
|
| 11 |
+
self.tokenizer = M2M100Tokenizer.from_pretrained(
|
| 12 |
+
self.model_name,
|
| 13 |
+
cache_dir=cache_dir,
|
| 14 |
+
local_files_only=True # Only use cached files
|
| 15 |
+
)
|
| 16 |
self.model = M2M100ForConditionalGeneration.from_pretrained(
|
| 17 |
self.model_name,
|
| 18 |
+
cache_dir=cache_dir,
|
| 19 |
+
local_files_only=True,
|
| 20 |
+
device_map="cpu",
|
| 21 |
+
low_cpu_mem_usage=True
|
| 22 |
+
)
|
| 23 |
self.model.eval()
|
| 24 |
|
| 25 |
def translate(self, text: str, source_lang: str, target_lang: str) -> str:
|
| 26 |
try:
|
| 27 |
self.tokenizer.src_lang = source_lang
|
| 28 |
+
encoded = self.tokenizer(text, return_tensors="pt")
|
| 29 |
|
| 30 |
with torch.no_grad():
|
| 31 |
generated = self.model.generate(
|
| 32 |
**encoded,
|
| 33 |
+
forced_bos_token_id=self.tokenizer.get_lang_id(target_lang),
|
| 34 |
+
max_length=128
|
| 35 |
)
|
| 36 |
|
| 37 |
return self.tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
|