Spaces:
Runtime error
Runtime error
Update modules/translation_model.py
Browse files- modules/translation_model.py +15 -8
modules/translation_model.py
CHANGED
@@ -4,27 +4,34 @@ import logging
|
|
4 |
|
5 |
class TranslationModel:
|
6 |
def __init__(self, cache_dir="models/"):
|
7 |
-
self.device = torch.device("
|
8 |
-
|
9 |
-
logging.warning("GPU not found, using CPU. Translation will be slower.")
|
10 |
|
11 |
self.model_name = "facebook/m2m100_1.2B"
|
12 |
-
self.tokenizer = M2M100Tokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
13 |
self.model = M2M100ForConditionalGeneration.from_pretrained(
|
14 |
self.model_name,
|
15 |
-
cache_dir=cache_dir
|
16 |
-
|
|
|
|
|
|
|
17 |
self.model.eval()
|
18 |
|
19 |
def translate(self, text: str, source_lang: str, target_lang: str) -> str:
|
20 |
try:
|
21 |
self.tokenizer.src_lang = source_lang
|
22 |
-
encoded = self.tokenizer(text, return_tensors="pt")
|
23 |
|
24 |
with torch.no_grad():
|
25 |
generated = self.model.generate(
|
26 |
**encoded,
|
27 |
-
forced_bos_token_id=self.tokenizer.get_lang_id(target_lang)
|
|
|
28 |
)
|
29 |
|
30 |
return self.tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
|
|
|
4 |
|
5 |
class TranslationModel:
|
6 |
def __init__(self, cache_dir="models/"):
|
7 |
+
self.device = torch.device("cpu")
|
8 |
+
logging.info("Using CPU for translations")
|
|
|
9 |
|
10 |
self.model_name = "facebook/m2m100_1.2B"
|
11 |
+
self.tokenizer = M2M100Tokenizer.from_pretrained(
|
12 |
+
self.model_name,
|
13 |
+
cache_dir=cache_dir,
|
14 |
+
local_files_only=True # Only use cached files
|
15 |
+
)
|
16 |
self.model = M2M100ForConditionalGeneration.from_pretrained(
|
17 |
self.model_name,
|
18 |
+
cache_dir=cache_dir,
|
19 |
+
local_files_only=True,
|
20 |
+
device_map="cpu",
|
21 |
+
low_cpu_mem_usage=True
|
22 |
+
)
|
23 |
self.model.eval()
|
24 |
|
25 |
def translate(self, text: str, source_lang: str, target_lang: str) -> str:
|
26 |
try:
|
27 |
self.tokenizer.src_lang = source_lang
|
28 |
+
encoded = self.tokenizer(text, return_tensors="pt")
|
29 |
|
30 |
with torch.no_grad():
|
31 |
generated = self.model.generate(
|
32 |
**encoded,
|
33 |
+
forced_bos_token_id=self.tokenizer.get_lang_id(target_lang),
|
34 |
+
max_length=128
|
35 |
)
|
36 |
|
37 |
return self.tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
|