Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from huggingface_hub import InferenceClient
|
|
3 |
import json
|
4 |
from typing import Dict, List, Any
|
5 |
import time
|
|
|
6 |
|
7 |
# Initialize the client with retries
|
8 |
MAX_RETRIES = 3
|
@@ -13,7 +14,7 @@ def create_client(retries=MAX_RETRIES):
|
|
13 |
for attempt in range(retries):
|
14 |
try:
|
15 |
return InferenceClient(
|
16 |
-
"
|
17 |
timeout=30
|
18 |
)
|
19 |
except Exception as e:
|
@@ -35,6 +36,26 @@ def load_site_content() -> Dict[str, Any]:
|
|
35 |
print(f"Error loading JSON: {e}")
|
36 |
return {}
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def get_relevant_context(query: str, data: Dict[str, Any]) -> str:
|
39 |
"""Get relevant context based on the query keywords."""
|
40 |
query = query.lower()
|
@@ -94,8 +115,19 @@ Company Information:
|
|
94 |
Features: {', '.join(spec_data.get('core_features', []))}
|
95 |
Technologies: {', '.join(spec_data.get('key_technologies', []))}""")
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Add payment information for relevant queries
|
98 |
-
if any(word in query for word in ['payment', 'pay', 'cost', 'pricing', 'bank', 'bitcoin', 'eth', 'btc']):
|
99 |
info = data.get('company_info', {})
|
100 |
context_parts.append(f"\nPayment Information: {info.get('payment', '')}")
|
101 |
|
@@ -135,19 +167,19 @@ def respond(
|
|
135 |
# Get relevant context
|
136 |
context = get_relevant_context(message, content)
|
137 |
|
138 |
-
# Enhanced system message with
|
139 |
enhanced_system_message = f"""{system_message}
|
140 |
IMPORTANT CONTEXT - USE THIS INFORMATION ONLY:
|
141 |
{context}
|
142 |
-
|
143 |
-
1.
|
144 |
-
2.
|
145 |
-
3.
|
146 |
-
4.
|
147 |
-
5.
|
148 |
-
6.
|
149 |
-
7.
|
150 |
-
8.
|
151 |
|
152 |
try:
|
153 |
# Format conversation history
|
@@ -177,24 +209,76 @@ STRICT INSTRUCTIONS:
|
|
177 |
client = create_client()
|
178 |
yield "I apologize, but I encountered an error. Please try your question again."
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
gr.
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
)
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
if __name__ == "__main__":
|
|
|
200 |
demo.launch()
|
|
|
3 |
import json
|
4 |
from typing import Dict, List, Any
|
5 |
import time
|
6 |
+
import random
|
7 |
|
8 |
# Initialize the client with retries
|
9 |
MAX_RETRIES = 3
|
|
|
14 |
for attempt in range(retries):
|
15 |
try:
|
16 |
return InferenceClient(
|
17 |
+
"mistralai/Mistral-7B-Instruct-v0.2", # Updated to a more capable model
|
18 |
timeout=30
|
19 |
)
|
20 |
except Exception as e:
|
|
|
36 |
print(f"Error loading JSON: {e}")
|
37 |
return {}
|
38 |
|
39 |
+
def get_engagement_prompt(content):
|
40 |
+
"""Generate a random friendly greeting."""
|
41 |
+
prompts = [
|
42 |
+
"π Welcome to SletcherSystems! How can I assist you today?",
|
43 |
+
"πΏπ¦ Hello from SletcherSystems in South Africa! How may I help you?",
|
44 |
+
"π¨βπ» Need help with AI solutions or educational technology? I'm here to assist!",
|
45 |
+
"π Looking to transform your business with AI? Let me know what you're interested in!",
|
46 |
+
"π Greetings! I'm your SletcherSystems virtual assistant. What can I help you with?"
|
47 |
+
]
|
48 |
+
|
49 |
+
# Add product-specific prompts if available
|
50 |
+
products = content.get('products', [])
|
51 |
+
if products and isinstance(products, list):
|
52 |
+
product_count = min(2, len(products)) # Get up to 2 products
|
53 |
+
for i in range(product_count):
|
54 |
+
product = products[i]
|
55 |
+
prompts.append(f"π Interested in our {product.get('name', '')}? Feel free to ask about it!")
|
56 |
+
|
57 |
+
return random.choice(prompts)
|
58 |
+
|
59 |
def get_relevant_context(query: str, data: Dict[str, Any]) -> str:
|
60 |
"""Get relevant context based on the query keywords."""
|
61 |
query = query.lower()
|
|
|
115 |
Features: {', '.join(spec_data.get('core_features', []))}
|
116 |
Technologies: {', '.join(spec_data.get('key_technologies', []))}""")
|
117 |
|
118 |
+
# Products information
|
119 |
+
if any(word in query for word in ['product', 'pricing', 'cost', 'buy', 'purchase', 'student', 'enterprise', 'personal']):
|
120 |
+
products = data.get('products', [])
|
121 |
+
context_parts.append("\nOur Products:")
|
122 |
+
for product in products:
|
123 |
+
context_parts.append(f"""
|
124 |
+
- {product.get('name', '')}
|
125 |
+
Description: {product.get('description', '')}
|
126 |
+
Price: {product.get('price', 'Contact for pricing')}
|
127 |
+
Features: {', '.join(product.get('features', []))}""")
|
128 |
+
|
129 |
# Add payment information for relevant queries
|
130 |
+
if any(word in query for word in ['payment', 'pay', 'cost', 'pricing', 'bank', 'bitcoin', 'eth', 'btc', 'crypto']):
|
131 |
info = data.get('company_info', {})
|
132 |
context_parts.append(f"\nPayment Information: {info.get('payment', '')}")
|
133 |
|
|
|
167 |
# Get relevant context
|
168 |
context = get_relevant_context(message, content)
|
169 |
|
170 |
+
# Enhanced system message with conversation guidance
|
171 |
enhanced_system_message = f"""{system_message}
|
172 |
IMPORTANT CONTEXT - USE THIS INFORMATION ONLY:
|
173 |
{context}
|
174 |
+
CONVERSATION GUIDELINES:
|
175 |
+
1. Be warm, friendly, and conversational - feel free to use emoji occasionally πΏπ¦
|
176 |
+
2. ONLY use information from the context provided above
|
177 |
+
3. If information isn't in the context, politely say you don't have that specific information
|
178 |
+
4. We are a proudly South African company - incorporate this identity naturally
|
179 |
+
5. Avoid technical jargon unless directly relevant to the question
|
180 |
+
6. Keep responses concise and focused on helping the user
|
181 |
+
7. For product inquiries, mention relevant features and pricing
|
182 |
+
8. Acknowledge Wayne Sletcher as CEO and Founder when contextually appropriate"""
|
183 |
|
184 |
try:
|
185 |
# Format conversation history
|
|
|
209 |
client = create_client()
|
210 |
yield "I apologize, but I encountered an error. Please try your question again."
|
211 |
|
212 |
+
def create_chat_interface():
|
213 |
+
content = load_site_content()
|
214 |
+
|
215 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
216 |
+
with gr.Row():
|
217 |
+
with gr.Column(scale=3):
|
218 |
+
chatbot = gr.Chatbot(
|
219 |
+
label="SletcherSystems Assistant",
|
220 |
+
height=500,
|
221 |
+
avatar_images=["https://api.dicebear.com/7.x/bottts/svg?seed=user", "https://api.dicebear.com/7.x/bottts/svg?seed=sletcher"]
|
222 |
+
)
|
223 |
+
|
224 |
+
with gr.Row():
|
225 |
+
msg = gr.Textbox(
|
226 |
+
placeholder="Ask me about SletcherSystems...",
|
227 |
+
label="Your message",
|
228 |
+
scale=8
|
229 |
+
)
|
230 |
+
submit = gr.Button("Send", variant="primary", scale=1)
|
231 |
+
clear = gr.Button("Clear", variant="secondary", scale=1)
|
232 |
+
|
233 |
+
with gr.Accordion("Advanced Settings", open=False):
|
234 |
+
system_message = gr.Textbox(
|
235 |
+
value="You are the official AI assistant for SletcherSystems, a proudly South African technology company. Provide helpful, friendly information based on the context provided.",
|
236 |
+
label="System message"
|
237 |
+
)
|
238 |
+
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens")
|
239 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature")
|
240 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
241 |
+
|
242 |
+
# Add initial greeting
|
243 |
+
def show_greeting():
|
244 |
+
greeting = "π Welcome to SletcherSystems! How can I assist you today?"
|
245 |
+
try:
|
246 |
+
if content:
|
247 |
+
greeting = get_engagement_prompt(content)
|
248 |
+
except Exception as e:
|
249 |
+
print(f"Error generating greeting: {e}")
|
250 |
+
return [[None, greeting]]
|
251 |
+
|
252 |
+
def user_submit(message, chat_history):
|
253 |
+
return "", chat_history + [[message, None]]
|
254 |
+
|
255 |
+
def bot_response(chat_history, system_msg, max_tok, temp, top_probability):
|
256 |
+
if chat_history and chat_history[-1][1] is None:
|
257 |
+
user_message = chat_history[-1][0]
|
258 |
+
chat_history[-1][1] = "" # Initialize bot response
|
259 |
+
|
260 |
+
for chunk in respond(user_message, chat_history[:-1], system_msg, max_tok, temp, top_probability):
|
261 |
+
chat_history[-1][1] = chunk
|
262 |
+
yield chat_history
|
263 |
+
else:
|
264 |
+
yield chat_history
|
265 |
+
|
266 |
+
# Set up event handlers
|
267 |
+
msg.submit(user_submit, [msg, chatbot], [msg, chatbot]).then(
|
268 |
+
bot_response, [chatbot, system_message, max_tokens, temperature, top_p], [chatbot]
|
269 |
+
)
|
270 |
+
|
271 |
+
submit.click(user_submit, [msg, chatbot], [msg, chatbot]).then(
|
272 |
+
bot_response, [chatbot, system_message, max_tokens, temperature, top_p], [chatbot]
|
273 |
+
)
|
274 |
+
|
275 |
+
clear.click(lambda: (None, []), None, [msg, chatbot], queue=False)
|
276 |
+
|
277 |
+
# Show initial greeting on load
|
278 |
+
demo.load(show_greeting, None, chatbot)
|
279 |
+
|
280 |
+
return demo
|
281 |
|
282 |
if __name__ == "__main__":
|
283 |
+
demo = create_chat_interface()
|
284 |
demo.launch()
|