Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ from huggingface_hub import InferenceClient
|
|
3 |
import json
|
4 |
from typing import Dict, List, Any
|
5 |
import time
|
6 |
-
import random
|
7 |
|
8 |
# Initialize the client with retries
|
9 |
MAX_RETRIES = 3
|
@@ -14,7 +13,7 @@ def create_client(retries=MAX_RETRIES):
|
|
14 |
for attempt in range(retries):
|
15 |
try:
|
16 |
return InferenceClient(
|
17 |
-
"
|
18 |
timeout=30
|
19 |
)
|
20 |
except Exception as e:
|
@@ -36,26 +35,6 @@ def load_site_content() -> Dict[str, Any]:
|
|
36 |
print(f"Error loading JSON: {e}")
|
37 |
return {}
|
38 |
|
39 |
-
def get_engagement_prompt(content):
|
40 |
-
"""Generate a random friendly greeting."""
|
41 |
-
prompts = [
|
42 |
-
"π Welcome to SletcherSystems! How can I assist you today?",
|
43 |
-
"πΏπ¦ Hello from SletcherSystems in South Africa! How may I help you?",
|
44 |
-
"π¨βπ» Need help with AI solutions or educational technology? I'm here to assist!",
|
45 |
-
"π Looking to transform your business with AI? Let me know what you're interested in!",
|
46 |
-
"π Greetings! I'm your SletcherSystems virtual assistant. What can I help you with?"
|
47 |
-
]
|
48 |
-
|
49 |
-
# Add product-specific prompts if available
|
50 |
-
products = content.get('products', [])
|
51 |
-
if products and isinstance(products, list):
|
52 |
-
product_count = min(2, len(products)) # Get up to 2 products
|
53 |
-
for i in range(product_count):
|
54 |
-
product = products[i]
|
55 |
-
prompts.append(f"π Interested in our {product.get('name', '')}? Feel free to ask about it!")
|
56 |
-
|
57 |
-
return random.choice(prompts)
|
58 |
-
|
59 |
def get_relevant_context(query: str, data: Dict[str, Any]) -> str:
|
60 |
"""Get relevant context based on the query keywords."""
|
61 |
query = query.lower()
|
@@ -115,19 +94,8 @@ Company Information:
|
|
115 |
Features: {', '.join(spec_data.get('core_features', []))}
|
116 |
Technologies: {', '.join(spec_data.get('key_technologies', []))}""")
|
117 |
|
118 |
-
# Products information
|
119 |
-
if any(word in query for word in ['product', 'pricing', 'cost', 'buy', 'purchase', 'student', 'enterprise', 'personal']):
|
120 |
-
products = data.get('products', [])
|
121 |
-
context_parts.append("\nOur Products:")
|
122 |
-
for product in products:
|
123 |
-
context_parts.append(f"""
|
124 |
-
- {product.get('name', '')}
|
125 |
-
Description: {product.get('description', '')}
|
126 |
-
Price: {product.get('price', 'Contact for pricing')}
|
127 |
-
Features: {', '.join(product.get('features', []))}""")
|
128 |
-
|
129 |
# Add payment information for relevant queries
|
130 |
-
if any(word in query for word in ['payment', 'pay', 'cost', 'pricing', 'bank', 'bitcoin', 'eth', 'btc'
|
131 |
info = data.get('company_info', {})
|
132 |
context_parts.append(f"\nPayment Information: {info.get('payment', '')}")
|
133 |
|
@@ -155,117 +123,78 @@ def respond(
|
|
155 |
if client is None:
|
156 |
client = create_client()
|
157 |
if client is None:
|
158 |
-
|
|
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
171 |
{context}
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
-
|
|
|
|
|
|
|
|
|
|
|
176 |
|
|
|
177 |
# Format conversation history
|
178 |
messages = [{"role": "system", "content": enhanced_system_message}]
|
179 |
for user_msg, assistant_msg in history:
|
180 |
-
|
|
|
181 |
if assistant_msg:
|
182 |
messages.append({"role": "assistant", "content": assistant_msg})
|
183 |
messages.append({"role": "user", "content": message})
|
184 |
|
185 |
-
#
|
186 |
-
response =
|
|
|
187 |
messages,
|
188 |
max_tokens=max_tokens,
|
|
|
189 |
temperature=temperature,
|
190 |
top_p=top_p,
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
except Exception as e:
|
197 |
print(f"Error in chat completion: {e}")
|
|
|
198 |
client = create_client()
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
submit = gr.Button("Send", variant="primary", scale=1)
|
220 |
-
clear = gr.Button("Clear", variant="secondary", scale=1)
|
221 |
-
|
222 |
-
with gr.Accordion("Advanced Settings", open=False):
|
223 |
-
system_message = gr.Textbox(
|
224 |
-
value="You are the official AI assistant for SletcherSystems, a proudly South African technology company. Provide helpful, friendly information based on the context provided.",
|
225 |
-
label="System message"
|
226 |
-
)
|
227 |
-
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens")
|
228 |
-
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature")
|
229 |
-
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
230 |
-
|
231 |
-
# Add initial greeting
|
232 |
-
def show_greeting():
|
233 |
-
greeting = "π Welcome to SletcherSystems! How can I assist you today?"
|
234 |
-
try:
|
235 |
-
if content:
|
236 |
-
greeting = get_engagement_prompt(content)
|
237 |
-
except Exception as e:
|
238 |
-
print(f"Error generating greeting: {e}")
|
239 |
-
return [[None, greeting]]
|
240 |
-
|
241 |
-
def user_submit(message, chat_history):
|
242 |
-
return "", chat_history + [[message, None]]
|
243 |
-
|
244 |
-
def bot_response(chat_history, system_msg, max_tok, temp, top_probability):
|
245 |
-
if chat_history and chat_history[-1][1] is None:
|
246 |
-
user_message = chat_history[-1][0]
|
247 |
-
response = respond(user_message, chat_history[:-1], system_msg, max_tok, temp, top_probability)
|
248 |
-
chat_history[-1][1] = response
|
249 |
-
yield chat_history
|
250 |
-
else:
|
251 |
-
yield chat_history
|
252 |
-
|
253 |
-
# Set up event handlers
|
254 |
-
msg.submit(user_submit, [msg, chatbot], [msg, chatbot]).then(
|
255 |
-
bot_response, [chatbot, system_message, max_tokens, temperature, top_p], [chatbot]
|
256 |
-
)
|
257 |
-
|
258 |
-
submit.click(user_submit, [msg, chatbot], [msg, chatbot]).then(
|
259 |
-
bot_response, [chatbot, system_message, max_tokens, temperature, top_p], [chatbot]
|
260 |
-
)
|
261 |
-
|
262 |
-
clear.click(lambda: (None, []), None, [msg, chatbot], queue=False)
|
263 |
-
|
264 |
-
# Show initial greeting on load
|
265 |
-
demo.load(show_greeting, None, chatbot)
|
266 |
-
|
267 |
-
return demo
|
268 |
|
269 |
if __name__ == "__main__":
|
270 |
-
demo = create_chat_interface()
|
271 |
demo.launch()
|
|
|
3 |
import json
|
4 |
from typing import Dict, List, Any
|
5 |
import time
|
|
|
6 |
|
7 |
# Initialize the client with retries
|
8 |
MAX_RETRIES = 3
|
|
|
13 |
for attempt in range(retries):
|
14 |
try:
|
15 |
return InferenceClient(
|
16 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
17 |
timeout=30
|
18 |
)
|
19 |
except Exception as e:
|
|
|
35 |
print(f"Error loading JSON: {e}")
|
36 |
return {}
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def get_relevant_context(query: str, data: Dict[str, Any]) -> str:
|
39 |
"""Get relevant context based on the query keywords."""
|
40 |
query = query.lower()
|
|
|
94 |
Features: {', '.join(spec_data.get('core_features', []))}
|
95 |
Technologies: {', '.join(spec_data.get('key_technologies', []))}""")
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Add payment information for relevant queries
|
98 |
+
if any(word in query for word in ['payment', 'pay', 'cost', 'pricing', 'bank', 'bitcoin', 'eth', 'btc']):
|
99 |
info = data.get('company_info', {})
|
100 |
context_parts.append(f"\nPayment Information: {info.get('payment', '')}")
|
101 |
|
|
|
123 |
if client is None:
|
124 |
client = create_client()
|
125 |
if client is None:
|
126 |
+
yield "I apologize, but I'm having trouble connecting to the language model. Please try again in a moment."
|
127 |
+
return
|
128 |
|
129 |
+
# Load content
|
130 |
+
content = load_site_content()
|
131 |
+
if not content:
|
132 |
+
yield "I apologize, but I'm having trouble accessing the company information. Please try again in a moment."
|
133 |
+
return
|
134 |
+
|
135 |
+
# Get relevant context
|
136 |
+
context = get_relevant_context(message, content)
|
137 |
+
|
138 |
+
# Enhanced system message with strict instructions
|
139 |
+
enhanced_system_message = f"""{system_message}
|
140 |
+
IMPORTANT CONTEXT - USE THIS INFORMATION ONLY:
|
141 |
{context}
|
142 |
+
STRICT INSTRUCTIONS:
|
143 |
+
1. ONLY use information from the context provided above
|
144 |
+
2. If information isn't in the context, say "I don't have that specific information"
|
145 |
+
3. NEVER make assumptions about location - we are a proudly South African company
|
146 |
+
4. NEVER invent services or capabilities not listed
|
147 |
+
5. Be accurate about our AI and educational technology focus
|
148 |
+
6. Acknowledge our cryptocurrency acceptance when relevant
|
149 |
+
7. Use exact statistics when they're provided in the context
|
150 |
+
8. Always acknowledge Wayne Sletcher as CEO and Founder when relevant"""
|
151 |
|
152 |
+
try:
|
153 |
# Format conversation history
|
154 |
messages = [{"role": "system", "content": enhanced_system_message}]
|
155 |
for user_msg, assistant_msg in history:
|
156 |
+
if user_msg:
|
157 |
+
messages.append({"role": "user", "content": user_msg})
|
158 |
if assistant_msg:
|
159 |
messages.append({"role": "assistant", "content": assistant_msg})
|
160 |
messages.append({"role": "user", "content": message})
|
161 |
|
162 |
+
# Stream the response
|
163 |
+
response = ""
|
164 |
+
for msg in client.chat_completion(
|
165 |
messages,
|
166 |
max_tokens=max_tokens,
|
167 |
+
stream=True,
|
168 |
temperature=temperature,
|
169 |
top_p=top_p,
|
170 |
+
):
|
171 |
+
token = msg.choices[0].delta.content
|
172 |
+
response += token
|
173 |
+
yield response
|
|
|
174 |
except Exception as e:
|
175 |
print(f"Error in chat completion: {e}")
|
176 |
+
# Try to recreate client on error
|
177 |
client = create_client()
|
178 |
+
yield "I apologize, but I encountered an error. Please try your question again."
|
179 |
+
|
180 |
+
# Create the Gradio interface
|
181 |
+
demo = gr.ChatInterface(
|
182 |
+
respond,
|
183 |
+
additional_inputs=[
|
184 |
+
gr.Textbox(
|
185 |
+
value="You are the official AI assistant for SletcherSystems, a proudly South African technology company. Provide accurate, specific information based only on the provided context.",
|
186 |
+
label="System message"
|
187 |
+
),
|
188 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
189 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
190 |
+
gr.Slider(
|
191 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
|
192 |
+
),
|
193 |
+
],
|
194 |
+
title="SletcherSystems AI Assistant",
|
195 |
+
description="Welcome! I'm here to help you learn about SletcherSystems, a proudly South African technology company.",
|
196 |
+
theme=gr.themes.Soft()
|
197 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
if __name__ == "__main__":
|
|
|
200 |
demo.launch()
|