Spaces:
Sleeping
Sleeping
Boning c
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,106 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
import requests
|
5 |
|
6 |
-
#
|
7 |
-
|
|
|
8 |
"Smilyai-labs/Sam-reason-S1",
|
9 |
"Smilyai-labs/Sam-reason-S1.5",
|
10 |
-
"Smilyai-labs/Sam-reason-S2
|
|
|
11 |
"Smilyai-labs/Sam-reason-v1",
|
12 |
"Smilyai-labs/Sam-reason-v2",
|
13 |
-
"Smilyai-labs/Sam-
|
14 |
-
"Smilyai-labs/Sam-flash-mini-v1",
|
15 |
-
"Smilyai-labs/Sam-reason-A1"
|
16 |
]
|
17 |
|
18 |
-
|
19 |
-
url = f"https://huggingface.co/api/models/{repo_id}"
|
20 |
-
try:
|
21 |
-
response = requests.get(url)
|
22 |
-
return response.status_code == 200
|
23 |
-
except Exception:
|
24 |
-
return False
|
25 |
|
26 |
-
#
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
model = None
|
36 |
-
tokenizer = None
|
37 |
-
generator = None
|
38 |
-
|
39 |
-
def load_model(model_name):
|
40 |
-
global model, tokenizer, generator
|
41 |
-
try:
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
-
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
44 |
-
model.eval()
|
45 |
-
# Use pipeline for generation with streaming support
|
46 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device=="cuda" else -1)
|
47 |
-
return f"✅ Loaded model: {model_name} on {device}"
|
48 |
-
except Exception as e:
|
49 |
-
return f"❌ Failed to load model: {model_name}\n{str(e)}"
|
50 |
-
|
51 |
-
def chat_stream(user_message, history, model_name):
|
52 |
-
global model, tokenizer, generator
|
53 |
-
|
54 |
-
if model is None or tokenizer is None or generator is None:
|
55 |
-
load_status = load_model(model_name)
|
56 |
-
if load_status.startswith("❌"):
|
57 |
-
yield history, load_status
|
58 |
-
return
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
for user, bot in history[:-1]:
|
69 |
-
prompt += f"User: {user}\nSam: {bot}\n"
|
70 |
-
prompt += f"User: {user_message}\nSam:"
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
# Set parameters to generate text token by token
|
76 |
-
# Use generator with `stream=True` if supported (Huggingface pipeline streaming)
|
77 |
-
# Note: some transformers versions or models may not support streaming in pipeline.
|
78 |
-
# We'll simulate streaming here by chunking output.
|
79 |
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
history[-1] = (user_message, partial)
|
90 |
-
yield history, ""
|
91 |
-
except Exception as e:
|
92 |
-
history[-1] = (user_message, f"Error during generation: {str(e)}")
|
93 |
-
yield history, ""
|
94 |
|
95 |
-
|
96 |
-
return [], ""
|
97 |
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
model_dropdown = gr.Dropdown(choices=AVAILABLE_MODELS, value=AVAILABLE_MODELS[0], label="Select Sam Model")
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
|
112 |
-
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
status_message = load_model(new_model)
|
121 |
-
return [], status_message
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
reset_btn.click(reset_chat, outputs=[chatbot, status])
|
127 |
|
128 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
4 |
|
5 |
+
# List of available SmilyAI Sam models (adjust as needed)
|
6 |
+
MODELS = [
|
7 |
+
"Smilyai-labs/Sam-reason-A1",
|
8 |
"Smilyai-labs/Sam-reason-S1",
|
9 |
"Smilyai-labs/Sam-reason-S1.5",
|
10 |
+
"Smilyai-labs/Sam-reason-S2",
|
11 |
+
"Smilyai-labs/Sam-reason-S3",
|
12 |
"Smilyai-labs/Sam-reason-v1",
|
13 |
"Smilyai-labs/Sam-reason-v2",
|
14 |
+
"Smilyai-labs/Sam-flash-mini-v1"
|
|
|
|
|
15 |
]
|
16 |
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Global vars to hold model and tokenizer
|
20 |
+
model = None
|
21 |
+
tokenizer = None
|
22 |
|
23 |
+
def load_model(model_name):
|
24 |
+
global model, tokenizer
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
27 |
+
model.eval()
|
28 |
+
return f"Loaded model: {model_name}"
|
29 |
|
30 |
+
def generate_stream(prompt, max_length=100, temperature=0.7, top_p=0.9):
|
31 |
+
global model, tokenizer
|
32 |
+
if model is None or tokenizer is None:
|
33 |
+
yield "Model not loaded. Please select a model first."
|
34 |
+
return
|
35 |
|
36 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
generated_ids = input_ids
|
39 |
+
output_text = tokenizer.decode(input_ids[0])
|
40 |
|
41 |
+
# Generate tokens one by one
|
42 |
+
for _ in range(max_length):
|
43 |
+
outputs = model(generated_ids)
|
44 |
+
logits = outputs.logits
|
45 |
|
46 |
+
# Get logits for last token
|
47 |
+
next_token_logits = logits[:, -1, :] / temperature
|
|
|
|
|
|
|
48 |
|
49 |
+
# Apply top_p filtering for nucleus sampling
|
50 |
+
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
51 |
+
cumulative_probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Remove tokens with cumulative prob above top_p
|
54 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
55 |
+
# Shift mask right to keep at least one token
|
56 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
57 |
+
sorted_indices_to_remove[..., 0] = 0
|
58 |
|
59 |
+
filtered_logits = next_token_logits.clone()
|
60 |
+
filtered_logits[:, sorted_indices[sorted_indices_to_remove]] = -float('Inf')
|
61 |
|
62 |
+
# Sample from filtered distribution
|
63 |
+
probabilities = torch.softmax(filtered_logits, dim=-1)
|
64 |
+
next_token = torch.multinomial(probabilities, num_samples=1)
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
generated_ids = torch.cat([generated_ids, next_token], dim=-1)
|
|
|
67 |
|
68 |
+
new_token_text = tokenizer.decode(next_token[0])
|
69 |
+
output_text += new_token_text
|
70 |
|
71 |
+
yield output_text
|
|
|
72 |
|
73 |
+
# Stop if EOS token generated
|
74 |
+
if next_token.item() == tokenizer.eos_token_id:
|
75 |
+
break
|
76 |
|
77 |
+
def on_model_change(model_name):
|
78 |
+
status = load_model(model_name)
|
79 |
+
return status
|
80 |
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown("# SmilyAI Sam Models — Manual Token Streaming Generator")
|
83 |
|
84 |
+
with gr.Row():
|
85 |
+
model_selector = gr.Dropdown(choices=MODELS, value=MODELS[0], label="Select Model")
|
86 |
+
status = gr.Textbox(label="Status", interactive=False)
|
87 |
|
88 |
+
prompt_input = gr.Textbox(lines=3, placeholder="Enter your prompt here...", label="Prompt")
|
89 |
+
output_box = gr.Textbox(label="Generated Text", lines=15, interactive=False)
|
|
|
|
|
90 |
|
91 |
+
generate_btn = gr.Button("Generate")
|
92 |
+
|
93 |
+
# Load default model
|
94 |
+
status.value = load_model(MODELS[0])
|
95 |
+
|
96 |
+
model_selector.change(on_model_change, inputs=model_selector, outputs=status)
|
97 |
+
|
98 |
+
def generate_func(prompt):
|
99 |
+
if not prompt.strip():
|
100 |
+
yield "Please enter a prompt."
|
101 |
+
return
|
102 |
+
yield from generate_stream(prompt)
|
103 |
|
104 |
+
generate_btn.click(generate_func, inputs=prompt_input, outputs=output_box)
|
|
|
105 |
|
106 |
+
demo.launch()
|