Spaces:
Sleeping
Sleeping
Boning c
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,89 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
import re
|
5 |
-
import time
|
6 |
from html import escape
|
7 |
|
8 |
-
# Model
|
9 |
-
PRIMARY_MODEL
|
10 |
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-A1"
|
11 |
-
USAGE_LIMIT
|
12 |
-
|
13 |
-
device
|
14 |
|
15 |
primary_model = primary_tokenizer = None
|
16 |
fallback_model = fallback_tokenizer = None
|
17 |
-
usage_info = {}
|
18 |
|
19 |
-
# Load
|
20 |
def load_models():
|
21 |
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
|
22 |
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL, trust_remote_code=True)
|
23 |
-
primary_model
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
return f"β
Loaded: {PRIMARY_MODEL} with fallback {FALLBACK_MODEL}"
|
27 |
|
28 |
-
#
|
29 |
def build_chat_prompt(history, user_input, reasoning_enabled):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
prompt += f"<|user|>\n{user_input}\n<|assistant|>\n"
|
35 |
return prompt
|
36 |
|
37 |
-
# Collapse <think>
|
38 |
def format_thinking(text):
|
39 |
match = re.search(r"<think>(.*?)</think>", text, re.DOTALL)
|
40 |
-
if match:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
|
|
|
50 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
51 |
generated = input_ids
|
52 |
assistant_text = ""
|
53 |
|
54 |
for _ in range(max_length):
|
55 |
logits = model(generated).logits[:, -1, :] / temperature
|
56 |
-
sorted_logits,
|
57 |
probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
|
|
|
|
58 |
mask = probs > top_p
|
59 |
mask[..., 1:] = mask[..., :-1].clone()
|
60 |
-
mask[..., 0]
|
61 |
filtered = logits.clone()
|
62 |
-
filtered[:,
|
63 |
|
|
|
64 |
next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
|
65 |
generated = torch.cat([generated, next_token], dim=-1)
|
66 |
-
new_text = tokenizer.decode(next_token[0])
|
67 |
assistant_text += new_text
|
68 |
|
|
|
69 |
if assistant_text.startswith("<|assistant|>"):
|
70 |
assistant_text = assistant_text[len("<|assistant|>"):]
|
71 |
|
72 |
-
#
|
73 |
if "<|user|>" in new_text:
|
74 |
break
|
75 |
|
@@ -78,55 +92,92 @@ def generate_stream(prompt, use_fallback=False, max_length=100, temperature=0.2,
|
|
78 |
if next_token.item() == tokenizer.eos_token_id:
|
79 |
break
|
80 |
|
81 |
-
# Respond
|
82 |
-
def respond(
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
yield history, history, f"π§ A3
|
|
|
|
|
|
|
103 |
|
104 |
def clear_chat():
|
105 |
-
return [], [], "π§ A3
|
106 |
|
107 |
-
# UI
|
108 |
with gr.Blocks() as demo:
|
109 |
-
gr.
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
with gr.Row():
|
116 |
-
user_input
|
117 |
-
reason_toggle
|
118 |
-
send_btn
|
119 |
|
120 |
clear_btn = gr.Button("Clear Chat")
|
|
|
121 |
model_status.value = load_models()
|
122 |
|
|
|
123 |
send_btn.click(
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
127 |
)
|
128 |
|
129 |
-
clear_btn.click(fn=clear_chat,
|
|
|
|
|
|
|
130 |
|
131 |
demo.queue()
|
132 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import re, time, json
|
|
|
5 |
from html import escape
|
6 |
|
7 |
+
# βββ Model Config βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
8 |
+
PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A3"
|
9 |
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-A1"
|
10 |
+
USAGE_LIMIT = 5 # max messages before fallback
|
11 |
+
RESET_MS = 20 * 60 * 1000 # 20 minutes in milliseconds
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
primary_model = primary_tokenizer = None
|
15 |
fallback_model = fallback_tokenizer = None
|
|
|
16 |
|
17 |
+
# βββ Load Models ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
18 |
def load_models():
|
19 |
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
|
20 |
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL, trust_remote_code=True)
|
21 |
+
primary_model = AutoModelForCausalLM.from_pretrained(PRIMARY_MODEL,
|
22 |
+
torch_dtype=torch.float16
|
23 |
+
).to(device).eval()
|
24 |
+
fallback_tokenizer= AutoTokenizer.from_pretrained(FALLBACK_MODEL, trust_remote_code=True)
|
25 |
+
fallback_model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL,
|
26 |
+
torch_dtype=torch.float16
|
27 |
+
).to(device).eval()
|
28 |
return f"β
Loaded: {PRIMARY_MODEL} with fallback {FALLBACK_MODEL}"
|
29 |
|
30 |
+
# βββ Prompt Builder ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
31 |
def build_chat_prompt(history, user_input, reasoning_enabled):
|
32 |
+
# inject think/no_think as a system role
|
33 |
+
system_flag = "/think" if reasoning_enabled else "/no_think"
|
34 |
+
prompt = f"<|system|>\n{system_flag}\n"
|
35 |
+
for u, a in history:
|
36 |
+
prompt += f"<|user|>\n{u}\n<|assistant|>\n{a}\n"
|
37 |
prompt += f"<|user|>\n{user_input}\n<|assistant|>\n"
|
38 |
return prompt
|
39 |
|
40 |
+
# βββ Collapse <think> Blocks βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
41 |
def format_thinking(text):
|
42 |
match = re.search(r"<think>(.*?)</think>", text, re.DOTALL)
|
43 |
+
if not match:
|
44 |
+
return escape(text)
|
45 |
+
reasoning = escape(match.group(1).strip())
|
46 |
+
visible = re.sub(r"<think>.*?</think>", "[thinking...]", text,
|
47 |
+
flags=re.DOTALL).strip()
|
48 |
+
return (
|
49 |
+
escape(visible)
|
50 |
+
+ "<br><details><summary>π§ Show reasoning</summary>"
|
51 |
+
+ "<pre>" + reasoning + "</pre></details>"
|
52 |
+
)
|
53 |
+
|
54 |
+
# βββ Token-Stream Generator βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
55 |
+
def generate_stream(prompt, use_fallback=False,
|
56 |
+
max_length=100, temperature=0.2, top_p=0.9):
|
57 |
+
model = fallback_model if use_fallback else primary_model
|
58 |
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
|
59 |
+
|
60 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
61 |
generated = input_ids
|
62 |
assistant_text = ""
|
63 |
|
64 |
for _ in range(max_length):
|
65 |
logits = model(generated).logits[:, -1, :] / temperature
|
66 |
+
sorted_logits, indices = torch.sort(logits, descending=True)
|
67 |
probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
68 |
+
|
69 |
+
# top-p filtering
|
70 |
mask = probs > top_p
|
71 |
mask[..., 1:] = mask[..., :-1].clone()
|
72 |
+
mask[..., 0] = 0
|
73 |
filtered = logits.clone()
|
74 |
+
filtered[:, indices[mask]] = -float("Inf")
|
75 |
|
76 |
+
# sample next token
|
77 |
next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
|
78 |
generated = torch.cat([generated, next_token], dim=-1)
|
79 |
+
new_text = tokenizer.decode(next_token[0], skip_special_tokens=False)
|
80 |
assistant_text += new_text
|
81 |
|
82 |
+
# strip opening assistant tag
|
83 |
if assistant_text.startswith("<|assistant|>"):
|
84 |
assistant_text = assistant_text[len("<|assistant|>"):]
|
85 |
|
86 |
+
# stop if model begins a new user turn
|
87 |
if "<|user|>" in new_text:
|
88 |
break
|
89 |
|
|
|
92 |
if next_token.item() == tokenizer.eos_token_id:
|
93 |
break
|
94 |
|
95 |
+
# βββ Main Respond Handler βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
96 |
+
def respond(user_msg, history, reasoning_enabled, limit_json):
|
97 |
+
# parse usage info from localStorage
|
98 |
+
info = json.loads(limit_json) if limit_json else {"count": 0}
|
99 |
+
count = info.get("count", 0)
|
100 |
+
|
101 |
+
use_fallback = count > USAGE_LIMIT
|
102 |
+
remaining = max(0, USAGE_LIMIT - count)
|
103 |
+
model_label = "A3" if not use_fallback else "Fallback A1"
|
104 |
+
|
105 |
+
# build prompt & init history
|
106 |
+
prompt = build_chat_prompt(history, user_msg.strip(), reasoning_enabled)
|
107 |
+
history = history + [[user_msg, ""]]
|
108 |
+
|
109 |
+
# stream assistant reply
|
110 |
+
for chunk in generate_stream(prompt, use_fallback=use_fallback):
|
111 |
+
formatted = format_thinking(chunk)
|
112 |
+
history[-1][1] = (
|
113 |
+
f"{formatted}<br><sub style='color:gray'>({model_label})</sub>"
|
114 |
+
)
|
115 |
+
# during streaming, show Generating
|
116 |
+
yield history, history, f"π§ A3 left: {remaining}", "Generating..."
|
117 |
+
|
118 |
+
# final update: set status back to Idle
|
119 |
+
yield history, history, f"π§ A3 left: {remaining}", "Idle"
|
120 |
|
121 |
def clear_chat():
|
122 |
+
return [], [], "π§ A3 left: 5", "Idle"
|
123 |
|
124 |
+
# βββ Gradio UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
125 |
with gr.Blocks() as demo:
|
126 |
+
gr.HTML( # inject localStorage logic
|
127 |
+
"""
|
128 |
+
<script>
|
129 |
+
function updateUsageLimit() {
|
130 |
+
const key = "samai_limit";
|
131 |
+
let now = Date.now();
|
132 |
+
let record = JSON.parse(localStorage.getItem(key) || "null");
|
133 |
+
if (!record || (now - record.lastSeen) > {RESET_MS}) {{
|
134 |
+
record = {{count: 0, lastSeen: now}};
|
135 |
+
}}
|
136 |
+
record.count += 1;
|
137 |
+
record.lastSeen = now;
|
138 |
+
localStorage.setItem(key, JSON.stringify(record));
|
139 |
+
return record;
|
140 |
+
}
|
141 |
+
</script>
|
142 |
+
""".replace("{RESET_MS}", str(RESET_MS))
|
143 |
+
)
|
144 |
+
|
145 |
+
gr.Markdown("# π€ SamAI β Qwen Chat with Client-Side Limits")
|
146 |
+
|
147 |
+
# hidden box to carry JSON string from JS β Python
|
148 |
+
limit_json = gr.Textbox(visible=False)
|
149 |
+
model_status = gr.Textbox(interactive=False, label="Model Status")
|
150 |
+
usage_counter = gr.Textbox("π§ A3 left: 5", interactive=False, show_label=False)
|
151 |
+
status_display = gr.Textbox("Idle", interactive=False, label="Status")
|
152 |
+
|
153 |
+
chat_box = gr.Chatbot(type="tuples")
|
154 |
+
chat_state= gr.State([])
|
155 |
|
156 |
with gr.Row():
|
157 |
+
user_input = gr.Textbox(placeholder="Ask me anythingβ¦", show_label=False, scale=6)
|
158 |
+
reason_toggle= gr.Checkbox(label="Reason", value=True, scale=1)
|
159 |
+
send_btn = gr.Button("Send", scale=1)
|
160 |
|
161 |
clear_btn = gr.Button("Clear Chat")
|
162 |
+
|
163 |
model_status.value = load_models()
|
164 |
|
165 |
+
# first: JS updates localStorage β limit_json
|
166 |
send_btn.click(
|
167 |
+
fn=None,
|
168 |
+
_js="() => JSON.stringify(updateUsageLimit())",
|
169 |
+
outputs=[limit_json]
|
170 |
+
).then(
|
171 |
+
# then: call our Python respond() with that JSON
|
172 |
+
fn=respond,
|
173 |
+
inputs=[user_input, chat_state, reason_toggle, limit_json],
|
174 |
+
outputs=[chat_box, chat_state, usage_counter, status_display]
|
175 |
)
|
176 |
|
177 |
+
clear_btn.click(fn=clear_chat,
|
178 |
+
inputs=[],
|
179 |
+
outputs=[chat_box, chat_state, usage_counter, status_display]
|
180 |
+
)
|
181 |
|
182 |
demo.queue()
|
183 |
demo.launch()
|