Spaces:
Sleeping
Sleeping
Boning c
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# List of available SmilyAI Sam models (adjust as needed)
|
6 |
+
MODELS = [
|
7 |
+
"Smilyai-labs/Sam-reason-S1",
|
8 |
+
"Smilyai-labs/Sam-reason-S1.5",
|
9 |
+
"Smilyai-labs/Sam-reason-S2",
|
10 |
+
"Smilyai-labs/Sam-reason-S3",
|
11 |
+
"Smilyai-labs/Sam-reason-v1",
|
12 |
+
"Smilyai-labs/Sam-reason-v2",
|
13 |
+
"Smilyai-labs/Sam-reason-A1",
|
14 |
+
"Smilyai-labs/Sam-flash-mini-v1"
|
15 |
+
]
|
16 |
+
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
# Global vars to hold model and tokenizer
|
20 |
+
model = None
|
21 |
+
tokenizer = None
|
22 |
+
|
23 |
+
def load_model(model_name):
|
24 |
+
global model, tokenizer
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
27 |
+
model.eval()
|
28 |
+
return f"Loaded model: {model_name}"
|
29 |
+
|
30 |
+
def generate_stream(prompt, max_length=100, temperature=0.7, top_p=0.9):
|
31 |
+
global model, tokenizer
|
32 |
+
if model is None or tokenizer is None:
|
33 |
+
yield "Model not loaded. Please select a model first."
|
34 |
+
return
|
35 |
+
|
36 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
37 |
+
|
38 |
+
generated_ids = input_ids
|
39 |
+
output_text = tokenizer.decode(input_ids[0])
|
40 |
+
|
41 |
+
# Generate tokens one by one
|
42 |
+
for _ in range(max_length):
|
43 |
+
outputs = model(generated_ids)
|
44 |
+
logits = outputs.logits
|
45 |
+
|
46 |
+
# Get logits for last token
|
47 |
+
next_token_logits = logits[:, -1, :] / temperature
|
48 |
+
|
49 |
+
# Apply top_p filtering for nucleus sampling
|
50 |
+
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
51 |
+
cumulative_probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
52 |
+
|
53 |
+
# Remove tokens with cumulative prob above top_p
|
54 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
55 |
+
# Shift mask right to keep at least one token
|
56 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
57 |
+
sorted_indices_to_remove[..., 0] = 0
|
58 |
+
|
59 |
+
filtered_logits = next_token_logits.clone()
|
60 |
+
filtered_logits[:, sorted_indices[sorted_indices_to_remove]] = -float('Inf')
|
61 |
+
|
62 |
+
# Sample from filtered distribution
|
63 |
+
probabilities = torch.softmax(filtered_logits, dim=-1)
|
64 |
+
next_token = torch.multinomial(probabilities, num_samples=1)
|
65 |
+
|
66 |
+
generated_ids = torch.cat([generated_ids, next_token], dim=-1)
|
67 |
+
|
68 |
+
new_token_text = tokenizer.decode(next_token[0])
|
69 |
+
output_text += new_token_text
|
70 |
+
|
71 |
+
yield output_text
|
72 |
+
|
73 |
+
# Stop if EOS token generated
|
74 |
+
if next_token.item() == tokenizer.eos_token_id:
|
75 |
+
break
|
76 |
+
|
77 |
+
def on_model_change(model_name):
|
78 |
+
status = load_model(model_name)
|
79 |
+
return status
|
80 |
+
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown("# SmilyAI Sam Models — Manual Token Streaming Generator")
|
83 |
+
|
84 |
+
with gr.Row():
|
85 |
+
model_selector = gr.Dropdown(choices=MODELS, value=MODELS[0], label="Select Model")
|
86 |
+
status = gr.Textbox(label="Status", interactive=False)
|
87 |
+
|
88 |
+
prompt_input = gr.Textbox(lines=3, placeholder="Enter your prompt here...", label="Prompt")
|
89 |
+
output_box = gr.Textbox(label="Generated Text", lines=15, interactive=False)
|
90 |
+
|
91 |
+
generate_btn = gr.Button("Generate")
|
92 |
+
|
93 |
+
# Load default model
|
94 |
+
status.value = load_model(MODELS[0])
|
95 |
+
|
96 |
+
model_selector.change(on_model_change, inputs=model_selector, outputs=status)
|
97 |
+
|
98 |
+
def generate_func(prompt):
|
99 |
+
if not prompt.strip():
|
100 |
+
yield "Please enter a prompt."
|
101 |
+
return
|
102 |
+
yield from generate_stream(prompt)
|
103 |
+
|
104 |
+
generate_btn.click(generate_func, inputs=prompt_input, outputs=output_box)
|
105 |
+
|
106 |
+
demo.launch()
|