Spaces:
Runtime error
Runtime error
Boning c
commited on
Update latest_stable.txt
Browse files- latest_stable.txt +92 -0
latest_stable.txt
CHANGED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
# Model definitions
|
| 6 |
+
PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A1"
|
| 7 |
+
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-S2.1"
|
| 8 |
+
USAGE_LIMIT = 10
|
| 9 |
+
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
|
| 12 |
+
# Globals for models and tokenizers
|
| 13 |
+
primary_model, primary_tokenizer = None, None
|
| 14 |
+
fallback_model, fallback_tokenizer = None, None
|
| 15 |
+
|
| 16 |
+
# IP-based usage tracking
|
| 17 |
+
usage_counts = {}
|
| 18 |
+
|
| 19 |
+
def load_models():
|
| 20 |
+
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
|
| 21 |
+
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL)
|
| 22 |
+
primary_model = AutoModelForCausalLM.from_pretrained(PRIMARY_MODEL).to(device).eval()
|
| 23 |
+
fallback_tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL)
|
| 24 |
+
fallback_model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL).to(device).eval()
|
| 25 |
+
return f"Models loaded: {PRIMARY_MODEL} + fallback {FALLBACK_MODEL}"
|
| 26 |
+
|
| 27 |
+
def generate_stream(prompt, use_fallback=False, max_length=100, temperature=0.7, top_p=0.9):
|
| 28 |
+
model = fallback_model if use_fallback else primary_model
|
| 29 |
+
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
|
| 30 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 31 |
+
generated = input_ids
|
| 32 |
+
output_text = tokenizer.decode(input_ids[0])
|
| 33 |
+
|
| 34 |
+
for _ in range(max_length):
|
| 35 |
+
outputs = model(generated)
|
| 36 |
+
logits = outputs.logits[:, -1, :] / temperature
|
| 37 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 38 |
+
probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
| 39 |
+
mask = probs > top_p
|
| 40 |
+
mask[..., 1:] = mask[..., :-1].clone()
|
| 41 |
+
mask[..., 0] = 0
|
| 42 |
+
filtered = logits.clone()
|
| 43 |
+
filtered[:, sorted_indices[mask]] = -float("Inf")
|
| 44 |
+
next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
|
| 45 |
+
generated = torch.cat([generated, next_token], dim=-1)
|
| 46 |
+
new_text = tokenizer.decode(next_token[0])
|
| 47 |
+
output_text += new_text
|
| 48 |
+
yield output_text
|
| 49 |
+
if next_token.item() == tokenizer.eos_token_id:
|
| 50 |
+
break
|
| 51 |
+
|
| 52 |
+
def respond(msg, history, reasoning_enabled, request: gr.Request):
|
| 53 |
+
ip = request.client.host if request else "unknown"
|
| 54 |
+
usage_counts[ip] = usage_counts.get(ip, 0) + 1
|
| 55 |
+
use_fallback = usage_counts[ip] > USAGE_LIMIT
|
| 56 |
+
model_used = "A1" if not use_fallback else "Fallback S2.1"
|
| 57 |
+
prefix = "/think " if reasoning_enabled else "/no_think "
|
| 58 |
+
prompt = prefix + msg.strip()
|
| 59 |
+
history = history + [[msg, ""]]
|
| 60 |
+
for output in generate_stream(prompt, use_fallback):
|
| 61 |
+
history[-1][1] = output + f" ({model_used})"
|
| 62 |
+
yield history, history
|
| 63 |
+
|
| 64 |
+
def clear_chat():
|
| 65 |
+
return [], []
|
| 66 |
+
|
| 67 |
+
with gr.Blocks() as demo:
|
| 68 |
+
gr.Markdown("# 🤖 SmilyAI Reasoning Chat • Token-by-Token + IP Usage Limits")
|
| 69 |
+
|
| 70 |
+
model_status = gr.Textbox(label="Model Load Status", interactive=False)
|
| 71 |
+
chat_box = gr.Chatbot(label="Chat", type="tuples")
|
| 72 |
+
chat_state = gr.State([])
|
| 73 |
+
|
| 74 |
+
with gr.Row():
|
| 75 |
+
user_input = gr.Textbox(placeholder="Your message here...", show_label=False, scale=6)
|
| 76 |
+
reason_toggle = gr.Checkbox(label="Reason", value=True, scale=1)
|
| 77 |
+
send_btn = gr.Button("Send", scale=1)
|
| 78 |
+
|
| 79 |
+
clear_btn = gr.Button("Clear Chat")
|
| 80 |
+
|
| 81 |
+
model_status.value = load_models()
|
| 82 |
+
|
| 83 |
+
send_btn.click(
|
| 84 |
+
respond,
|
| 85 |
+
inputs=[user_input, chat_state, reason_toggle],
|
| 86 |
+
outputs=[chat_box, chat_state]
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
clear_btn.click(fn=clear_chat, inputs=[], outputs=[chat_box, chat_state])
|
| 90 |
+
|
| 91 |
+
demo.queue()
|
| 92 |
+
demo.launch()
|