Spaces:
Sleeping
Sleeping
Boning c
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,105 +2,94 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
"Smilyai-labs/Sam-reason-S1",
|
9 |
-
"Smilyai-labs/Sam-reason-S1.5",
|
10 |
-
"Smilyai-labs/Sam-reason-S2",
|
11 |
-
"Smilyai-labs/Sam-reason-S3",
|
12 |
-
"Smilyai-labs/Sam-reason-v1",
|
13 |
-
"Smilyai-labs/Sam-reason-v2",
|
14 |
-
"Smilyai-labs/Sam-flash-mini-v1"
|
15 |
-
]
|
16 |
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
-
# Global
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
37 |
-
|
38 |
generated_ids = input_ids
|
39 |
output_text = tokenizer.decode(input_ids[0])
|
40 |
|
41 |
-
# Generate tokens one by one
|
42 |
for _ in range(max_length):
|
43 |
outputs = model(generated_ids)
|
44 |
-
logits = outputs.logits
|
45 |
-
|
46 |
-
# Get logits for last token
|
47 |
-
next_token_logits = logits[:, -1, :] / temperature
|
48 |
-
|
49 |
-
# Apply top_p filtering for nucleus sampling
|
50 |
-
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
51 |
cumulative_probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
52 |
-
|
53 |
-
# Remove tokens with cumulative prob above top_p
|
54 |
sorted_indices_to_remove = cumulative_probs > top_p
|
55 |
-
|
56 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
57 |
sorted_indices_to_remove[..., 0] = 0
|
58 |
-
|
59 |
-
filtered_logits =
|
60 |
-
filtered_logits[:, sorted_indices[sorted_indices_to_remove]] = -float('Inf')
|
61 |
-
|
62 |
-
# Sample from filtered distribution
|
63 |
probabilities = torch.softmax(filtered_logits, dim=-1)
|
64 |
next_token = torch.multinomial(probabilities, num_samples=1)
|
65 |
-
|
66 |
generated_ids = torch.cat([generated_ids, next_token], dim=-1)
|
67 |
-
|
68 |
new_token_text = tokenizer.decode(next_token[0])
|
69 |
output_text += new_token_text
|
70 |
-
|
71 |
yield output_text
|
72 |
-
|
73 |
-
# Stop if EOS token generated
|
74 |
if next_token.item() == tokenizer.eos_token_id:
|
75 |
break
|
76 |
|
77 |
-
def
|
78 |
-
|
79 |
-
|
|
|
|
|
80 |
|
81 |
-
with
|
82 |
-
|
|
|
83 |
|
84 |
-
|
85 |
-
model_selector = gr.Dropdown(choices=MODELS, value=MODELS[0], label="Select Model")
|
86 |
-
status = gr.Textbox(label="Status", interactive=False)
|
87 |
|
88 |
-
|
89 |
-
|
|
|
90 |
|
91 |
-
|
|
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
if not prompt.strip():
|
100 |
-
yield "Please enter a prompt."
|
101 |
-
return
|
102 |
-
yield from generate_stream(prompt)
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
+
# Model identifiers
|
6 |
+
PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A1"
|
7 |
+
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-S2.1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
# Global model/tokenizer holders
|
12 |
+
primary_model = primary_tokenizer = None
|
13 |
+
fallback_model = fallback_tokenizer = None
|
14 |
+
|
15 |
+
# IP usage tracking
|
16 |
+
usage_counts = {}
|
17 |
+
USAGE_LIMIT = 10
|
18 |
+
|
19 |
+
def load_models():
|
20 |
+
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
|
21 |
+
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL)
|
22 |
+
primary_model = AutoModelForCausalLM.from_pretrained(PRIMARY_MODEL).to(device).eval()
|
23 |
+
fallback_tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL)
|
24 |
+
fallback_model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL).to(device).eval()
|
25 |
+
return f"Models loaded: {PRIMARY_MODEL} and fallback {FALLBACK_MODEL}"
|
26 |
+
|
27 |
+
def generate_stream(prompt, use_fallback=False, max_length=100, temperature=0.7, top_p=0.9):
|
28 |
+
model = fallback_model if use_fallback else primary_model
|
29 |
+
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
|
30 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
|
|
31 |
generated_ids = input_ids
|
32 |
output_text = tokenizer.decode(input_ids[0])
|
33 |
|
|
|
34 |
for _ in range(max_length):
|
35 |
outputs = model(generated_ids)
|
36 |
+
logits = outputs.logits[:, -1, :] / temperature
|
37 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
|
|
|
|
|
|
|
|
|
38 |
cumulative_probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
|
|
|
|
39 |
sorted_indices_to_remove = cumulative_probs > top_p
|
40 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1]
|
|
|
41 |
sorted_indices_to_remove[..., 0] = 0
|
42 |
+
filtered_logits = logits.clone()
|
43 |
+
filtered_logits[:, sorted_indices[sorted_indices_to_remove]] = -float("Inf")
|
|
|
|
|
|
|
44 |
probabilities = torch.softmax(filtered_logits, dim=-1)
|
45 |
next_token = torch.multinomial(probabilities, num_samples=1)
|
|
|
46 |
generated_ids = torch.cat([generated_ids, next_token], dim=-1)
|
|
|
47 |
new_token_text = tokenizer.decode(next_token[0])
|
48 |
output_text += new_token_text
|
|
|
49 |
yield output_text
|
|
|
|
|
50 |
if next_token.item() == tokenizer.eos_token_id:
|
51 |
break
|
52 |
|
53 |
+
def respond(message, chat_history, reason_toggle, request: gr.Request):
|
54 |
+
ip = request.client.host if request else "unknown"
|
55 |
+
usage_counts[ip] = usage_counts.get(ip, 0) + 1
|
56 |
+
use_fallback = usage_counts[ip] > USAGE_LIMIT
|
57 |
+
model_label = "A1" if not use_fallback else "Fallback S2.1"
|
58 |
|
59 |
+
# Prefix prompt with reasoning mode
|
60 |
+
prefix = "/think " if reason_toggle else "/no_think "
|
61 |
+
processed_message = prefix + message.strip()
|
62 |
|
63 |
+
chat_history = chat_history + [[message, ""]]
|
|
|
|
|
64 |
|
65 |
+
for response in generate_stream(processed_message, use_fallback=use_fallback):
|
66 |
+
chat_history[-1][1] = response + f" ({model_label})"
|
67 |
+
yield chat_history, chat_history
|
68 |
|
69 |
+
def clear_chat():
|
70 |
+
return [], []
|
71 |
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
gr.Markdown("# 🧠 SmilyAI Chatbot with Reasoning Toggle & Usage Limits")
|
74 |
+
|
75 |
+
model_status = gr.Textbox(label="Model Status", interactive=False)
|
76 |
+
|
77 |
+
chat_box = gr.Chatbot()
|
78 |
+
chat_history_state = gr.State([])
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
user_input = gr.Textbox(placeholder="Type your message...", show_label=False, scale=6)
|
82 |
+
reason_toggle = gr.Checkbox(label="Reason", value=True, scale=1)
|
83 |
+
send_btn = gr.Button("Send", scale=1)
|
84 |
|
85 |
+
clear_btn = gr.Button("Clear Chat")
|
86 |
|
87 |
+
model_status.value = load_models()
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
send_btn.click(
|
90 |
+
respond,
|
91 |
+
inputs=[user_input, chat_history_state, reason_toggle],
|
92 |
+
outputs=[chat_box, chat_history_state]
|
93 |
+
)
|
94 |
|
95 |
+
clear_btn.click(fn=clear_chat, inputs=[], outputs=[chat_box, chat_history_state])
|