Sam-chat-full / app.py
Boning c
Update app.py
4d45982 verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import re, json
from html import escape
# ─── Configuration ─────────────────────────────────────────────────────────
PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A3"
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-A1"
USAGE_LIMIT = 5
RESET_MS = 20 * 60 * 1000 # 20 minutes in milliseconds
device = "cuda" if torch.cuda.is_available() else "cpu"
primary_model = primary_tokenizer = None
fallback_model = fallback_tokenizer = None
# ─── Model Loading ─────────────────────────────────────────────────────────
def load_models():
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL, trust_remote_code=True)
primary_model = AutoModelForCausalLM.from_pretrained(
PRIMARY_MODEL, torch_dtype=torch.float16
).to(device).eval()
fallback_tokenizer= AutoTokenizer.from_pretrained(FALLBACK_MODEL, trust_remote_code=True)
fallback_model = AutoModelForCausalLM.from_pretrained(
FALLBACK_MODEL, torch_dtype=torch.float16
).to(device).eval()
return f"βœ… Loaded {PRIMARY_MODEL} (fallback: {FALLBACK_MODEL})"
# ─── Build Chat Prompt ──────────────────────────────────────────────────────
def build_chat_prompt(history, user_input, reasoning_enabled):
system_flag = "/think" if reasoning_enabled else "/no_think"
prompt = f"<|system|>\n{system_flag}\n"
for u, a in history:
prompt += f"<|user|>\n{u}\n<|assistant|>\n{a}\n"
prompt += f"<|user|>\n{user_input}\n<|assistant|>\n"
return prompt
# ─── Collapse <think> Blocks ────────────────────────────────────────────────
def format_thinking(text):
match = re.search(r"<think>(.*?)</think>", text, re.DOTALL)
if not match:
return escape(text)
reasoning = escape(match.group(1).strip())
visible = re.sub(r"<think>.*?</think>", "[thinking...]", text, flags=re.DOTALL).strip()
return (
escape(visible)
+ "<br><details><summary>🧠 Show reasoning</summary>"
+ f"<pre>{reasoning}</pre></details>"
)
# ─── Token-by-Token Streaming (Stops on <|user|>) ─────────────────────────
def generate_stream(prompt, use_fallback=False,
max_length=100, temperature=0.2, top_p=0.9):
model = fallback_model if use_fallback else primary_model
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
generated = input_ids
assistant_text = ""
for _ in range(max_length):
# 1) Get next-token logits and apply top-p
logits = model(generated).logits[:, -1, :] / temperature
sorted_logits, idxs = torch.sort(logits, descending=True)
probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
mask = probs > top_p
mask[..., 1:] = mask[..., :-1].clone()
mask[..., 0] = 0
filtered = logits.clone()
filtered[:, idxs[mask]] = -float("Inf")
# 2) Sample and append
next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
generated = torch.cat([generated, next_token], dim=-1)
new_text = tokenizer.decode(next_token[0], skip_special_tokens=False)
assistant_text += new_text
# 3) Remove any leading assistant tag
if assistant_text.startswith("<|assistant|>"):
assistant_text = assistant_text[len("<|assistant|>"):]
# 4) If we see a user‐turn tag, truncate and bail
if "<|user|>" in assistant_text:
assistant_text = assistant_text.split("<|user|>")[0]
yield assistant_text
break
# 5) Otherwise stream clean assistant text
yield assistant_text
# 6) End if EOS
if next_token.item() == tokenizer.eos_token_id:
break
# ─── Main Chat Handler ──────────────────────────────────────────────────────
def respond(message, history, reasoning_enabled, limit_json):
# parse client-side usage info
info = json.loads(limit_json) if limit_json else {"count": 0}
count = info.get("count", 0)
use_fallback = count > USAGE_LIMIT
remaining = max(0, USAGE_LIMIT - count)
model_label = "A3" if not use_fallback else "Fallback A1"
# initial yield to set "Generating…"
prompt = build_chat_prompt(history, message.strip(), reasoning_enabled)
history = history + [[message, ""]]
yield history, history, f"🧠 A3 left: {remaining}", "Generating…"
# stream assistant reply
for chunk in generate_stream(prompt, use_fallback):
formatted = format_thinking(chunk)
history[-1][1] = (
f"{formatted}<br><sub style='color:gray'>({model_label})</sub>"
)
yield history, history, f"🧠 A3 left: {remaining}", "Generating…"
# final yield resets button text
yield history, history, f"🧠 A3 left: {remaining}", "Send"
# ─── Clear Chat ─────────────────────────────────────────────────────────────
def clear_chat():
return [], [], "🧠 A3 left: 5", "Send"
# ─── Gradio UI ──────────────────────────────────────────────────────────────
with gr.Blocks() as demo:
# Inject client-side JS + CSS
gr.HTML(f"""
<script>
function updateUsageLimit() {{
const key = "samai_limit";
const now = Date.now();
let rec = JSON.parse(localStorage.getItem(key) || "null");
if (!rec || now - rec.lastSeen > {RESET_MS}) {{
rec = {{count:0, lastSeen: now}};
}}
rec.count += 1;
rec.lastSeen = now;
localStorage.setItem(key, JSON.stringify(rec));
document.getElementById("limit_json").value = JSON.stringify(rec);
}}
document.addEventListener("DOMContentLoaded", () => {{
const btn = document.getElementById("send_btn");
btn.addEventListener("click", () => {{
updateUsageLimit();
btn.innerText = "Generating…";
}});
}});
</script>
<style>
.send-circle {{
border-radius: 50%;
height: 40px;
width: 40px;
padding: 0;
font-size: 12px;
text-align: center;
}}
</style>
""")
gr.Markdown("# πŸ€– SamAI – Chat Reasoning (Final)")
# Hidden textbox ferrying usage JSON from JS β†’ Python
limit_json = gr.Textbox(visible=False, elem_id="limit_json")
model_status = gr.Textbox(interactive=False, label="Model Status")
usage_counter = gr.Textbox("🧠 A3 left: 5", interactive=False, show_label=False)
chat_box = gr.Chatbot(type="tuples")
chat_state = gr.State([])
with gr.Row():
user_input = gr.Textbox(placeholder="Ask anything...", show_label=False, scale=6)
reason_toggle = gr.Checkbox(label="Reason", value=True, scale=1)
send_btn = gr.Button("Send", elem_id="send_btn", elem_classes=["send-circle"], scale=1)
clear_btn = gr.Button("Clear")
model_status.value = load_models()
# Bind Send button -> respond()
send_btn.click(
fn=respond,
inputs=[user_input, chat_state, reason_toggle, limit_json],
outputs=[chat_box, chat_state, usage_counter, send_btn]
)
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[chat_box, chat_state, usage_counter, send_btn]
)
demo.queue()
demo.launch()