FROM python:3.13-slim WORKDIR /app # Install git and git-lfs for downloading large files (if needed) RUN apt-get update && \ apt-get install -y git git-lfs && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* # Copy requirements file COPY requirements.txt . # Install dependencies RUN pip install --no-cache-dir -r requirements.txt # Download NLTK data RUN python -c "import nltk; nltk.download('punkt'); nltk.download('wordnet'); nltk.download('stopwords')" # Create necessary directories RUN mkdir -p data/users data/sessions data/conversations data/feedback RUN mkdir -p mental_health_model_artifacts/chroma_db # Copy application files COPY api_mental_health.py . COPY .env.example .env COPY create_vector_db.py . # Copy model artifacts if they exist, or they should be mounted/downloaded at runtime # Note: For Hugging Face Spaces deployment, you'll need to use Git LFS or # provide a way to download these models at container startup COPY mental_health_model_artifacts/ mental_health_model_artifacts/ # Create a startup script to handle potential model downloading RUN echo '#!/bin/bash\n\ # Check if models exist\n\ if [ ! -f "mental_health_model_artifacts/crisis_classifier.pkl" ]; then\n\ echo "Warning: Model artifacts not found. Please mount them or implement a download method."\n\ fi\n\ # Start the API server\n\ exec uvicorn api_mental_health:app --host 0.0.0.0 --port 7860\n\ ' > /app/start.sh && chmod +x /app/start.sh # Expose the port Hugging Face Spaces expects EXPOSE 7860 # Use the startup script CMD ["/app/start.sh"]