Spaces:
Sleeping
Sleeping
import os | |
from transformers import pipeline, AutoTokenizer, AutoModelForTextGeneration | |
# Retrieve the API token from environment variables | |
api_token = os.getenv('hugging_face_api_token') | |
if not api_token: | |
raise ValueError("Hugging Face API token not found. Please set the HUGGING_FACE_API_TOKEN environment variable.") | |
# Configure the use of the token for Hugging Face operations | |
from huggingface_hub import HfFolder | |
HfFolder.save_token(api_token) | |
# Now you can securely use the model | |
model_name = "google/gemma-7b" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForTextGeneration.from_pretrained(model_name) | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# Streamlit app title and description | |
st.title("Gemma Text Generation App") | |
st.write("This app generates text based on the input prompt using the Gemma model.") | |
# Text input for user prompt | |
prompt = st.text_input("Enter your prompt:", "Once upon a time,") | |
# User controls for output length and creativity | |
max_length = st.slider("Select the maximum output length:", min_value=50, max_value=500, value=100) | |
temperature = st.slider("Adjust the creativity level (temperature):", min_value=0.1, max_value=1.0, value=0.7) | |
# Generate button to trigger text generation | |
if st.button("Generate Text"): | |
with st.spinner('Generating text...'): | |
try: | |
generated_text = generator(prompt, max_length=max_length, temperature=temperature)[0]['generated_text'] | |
except Exception as e: | |
st.error(f"Error generating text: {str(e)}") | |
else: | |
st.success('Text generation complete!') | |
st.markdown("### Generated Text:") | |
st.markdown(generated_text) | |
# About section | |
with st.expander("About"): | |
st.write(""" | |
The Gemma Text Generation app uses the powerful Gemma-7b model from Google to generate text. | |
Adjust the sliders to change the length and creativity of the output. | |
""") | |