Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Said Lfagrouche_RAG_Based_on_ syllabi_app
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import getpass
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import os
|
| 8 |
+
import pprint
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
from google.colab import drive
|
| 12 |
+
from gradio.themes.base import Base
|
| 13 |
+
from icecream import ic
|
| 14 |
+
from pymongo import MongoClient
|
| 15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 16 |
+
from weaviate.embedded import EmbeddedOptions
|
| 17 |
+
|
| 18 |
+
# langchain imports
|
| 19 |
+
from langchain.callbacks.tracers import ConsoleCallbackHandler
|
| 20 |
+
from langchain.document_loaders import PyPDFLoader, TextLoader
|
| 21 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 22 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate
|
| 23 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 24 |
+
from langchain.vectorstores import MongoDBAtlasVectorSearch, Weaviate
|
| 25 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
| 26 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 27 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 28 |
+
from langchain_openai import ChatOpenAI
|
| 29 |
+
|
| 30 |
+
# langchain_community imports
|
| 31 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 32 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 33 |
+
|
| 34 |
+
# Get secret keys.
|
| 35 |
+
os.environ["OPENAI_API_KEY"] = getpass.getpass()
|
| 36 |
+
os.environ["MONGO_URI"] = getpass.getpass()
|
| 37 |
+
|
| 38 |
+
# Retrieve environment variables.
|
| 39 |
+
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
| 40 |
+
MONGO_URI = os.getenv('MONGO_URI')
|
| 41 |
+
|
| 42 |
+
# For Google Colab.
|
| 43 |
+
# Mount (connect) our Google Drive to our Colab environment.
|
| 44 |
+
# This will establish a connection to our Google Drive, making it accessible from our Colab notebook.
|
| 45 |
+
drive.mount("/content/drive/")
|
| 46 |
+
|
| 47 |
+
# For Google Colab.
|
| 48 |
+
! ls "/content/drive/MyDrive/RAG Project"
|
| 49 |
+
|
| 50 |
+
# For Google Colab.
|
| 51 |
+
# Append our directory path to the Python system path.
|
| 52 |
+
directory_path = "/content/drive/MyDrive/RAG Project"
|
| 53 |
+
|
| 54 |
+
sys.path.append(directory_path)
|
| 55 |
+
|
| 56 |
+
# Print the updated system path to the console.
|
| 57 |
+
print("sys.path =", sys.path)
|
| 58 |
+
|
| 59 |
+
# Get all the filenames under our directory path.
|
| 60 |
+
my_pdfs = os.listdir(directory_path)
|
| 61 |
+
my_pdfs
|
| 62 |
+
|
| 63 |
+
# Connect to MongoDB Atlas cluster using the connection string.
|
| 64 |
+
cluster = MongoClient(MONGO_URI)
|
| 65 |
+
|
| 66 |
+
# Define the MongoDB database and collection name.
|
| 67 |
+
DB_NAME = "pdfs"
|
| 68 |
+
COLLECTION_NAME = "pdfs_collection"
|
| 69 |
+
|
| 70 |
+
# Connect to the specific collection in the database.
|
| 71 |
+
MONGODB_COLLECTION = cluster[DB_NAME][COLLECTION_NAME]
|
| 72 |
+
|
| 73 |
+
vector_search_index = "vector_index"
|
| 74 |
+
|
| 75 |
+
# Load the PDF.
|
| 76 |
+
loaders = []
|
| 77 |
+
for my_pdf in my_pdfs:
|
| 78 |
+
my_pdf_path = os.path.join(directory_path, my_pdf)
|
| 79 |
+
loaders.append(PyPDFLoader(my_pdf_path))
|
| 80 |
+
|
| 81 |
+
print("len(loaders) =", len(loaders))
|
| 82 |
+
|
| 83 |
+
loaders
|
| 84 |
+
|
| 85 |
+
# Load the PDF.
|
| 86 |
+
# data = [loader.load() for loader in loaders]
|
| 87 |
+
|
| 88 |
+
data = []
|
| 89 |
+
for loader in loaders:
|
| 90 |
+
data.append(loader.load())
|
| 91 |
+
|
| 92 |
+
print("len(data) =", len(data), "\n")
|
| 93 |
+
|
| 94 |
+
# First PDF file.
|
| 95 |
+
data[0]
|
| 96 |
+
|
| 97 |
+
# Initialize the text splitter.
|
| 98 |
+
# Uses a text splitter to split the data into smaller documents.
|
| 99 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=20)
|
| 100 |
+
text_splitter
|
| 101 |
+
|
| 102 |
+
# docs = [text_splitter.split_documents(doc) for doc in data]
|
| 103 |
+
|
| 104 |
+
docs = []
|
| 105 |
+
for doc in data:
|
| 106 |
+
chunk = text_splitter.split_documents(doc)
|
| 107 |
+
docs.append(chunk)
|
| 108 |
+
|
| 109 |
+
# Debugging purposes.
|
| 110 |
+
# Print the number of total documents to be stored in the vector database.
|
| 111 |
+
total = 0
|
| 112 |
+
for i in range(len(docs)):
|
| 113 |
+
if i == len(docs) - 1:
|
| 114 |
+
print(len(docs[i]), end="")
|
| 115 |
+
else:
|
| 116 |
+
print(len(docs[i]), "+ " ,end="")
|
| 117 |
+
total += len(docs[i])
|
| 118 |
+
print(" =", total, " total documents\n")
|
| 119 |
+
|
| 120 |
+
# Print the first document.
|
| 121 |
+
print(docs[0], "\n\n\n")
|
| 122 |
+
|
| 123 |
+
# Print the total number of PDF files.
|
| 124 |
+
# docs is a list of lists where each list stores all the documents for one PDF file.
|
| 125 |
+
print(len(docs))
|
| 126 |
+
|
| 127 |
+
docs
|
| 128 |
+
|
| 129 |
+
# Merge the documents to be embededed and store them in the vector database.
|
| 130 |
+
merged_documents = []
|
| 131 |
+
|
| 132 |
+
for doc in docs:
|
| 133 |
+
merged_documents.extend(doc)
|
| 134 |
+
|
| 135 |
+
# Print the merged list of all the documents.
|
| 136 |
+
print("len(merged_documents) =", len(merged_documents))
|
| 137 |
+
print(merged_documents)
|
| 138 |
+
|
| 139 |
+
# Hugging Face model for embeddings.
|
| 140 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
| 141 |
+
model_kwargs = {'device': 'cpu'}
|
| 142 |
+
embeddings = HuggingFaceEmbeddings(
|
| 143 |
+
model_name=model_name,
|
| 144 |
+
model_kwargs=model_kwargs,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
import weaviate
|
| 148 |
+
from weaviate.embedded import EmbeddedOptions
|
| 149 |
+
|
| 150 |
+
client = weaviate.Client(
|
| 151 |
+
embedded_options=EmbeddedOptions()
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
vector_search = Weaviate.from_documents(
|
| 155 |
+
client = client,
|
| 156 |
+
documents = merged_documents,
|
| 157 |
+
embedding = OpenAIEmbeddings(),
|
| 158 |
+
by_text = False
|
| 159 |
+
)
|
| 160 |
+
# At this point, 'docs' are split and indexed in Weaviate, enabling text search capabilities.
|
| 161 |
+
|
| 162 |
+
# Semantic Search.
|
| 163 |
+
# query = "When is the spring recess at The City College of New York for Spring 2024?"
|
| 164 |
+
query = "What are the professor names for this semester"
|
| 165 |
+
results = vector_search.similarity_search(query=query, k=10) # 10 most similar documents.
|
| 166 |
+
|
| 167 |
+
print("\n")
|
| 168 |
+
pprint.pprint(results)
|
| 169 |
+
# ic(results) # Debugging purposes.
|
| 170 |
+
|
| 171 |
+
# Semantic Search with Score.
|
| 172 |
+
# query = "When is the spring recess at The City College of New York for Spring 2024?"
|
| 173 |
+
query = "Where is operating system exam taken?"
|
| 174 |
+
results = vector_search.similarity_search_with_score(
|
| 175 |
+
query = query, k = 10 # 10 most similar documents.
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
pprint.pprint(results)
|
| 179 |
+
# ic(results) # Debugging purposes.
|
| 180 |
+
|
| 181 |
+
# Filter on metadata.
|
| 182 |
+
# Semantic search with filtering.
|
| 183 |
+
query = "Where is Data tools and algorithm exam taken?"
|
| 184 |
+
|
| 185 |
+
results = vector_search.similarity_search_with_score(
|
| 186 |
+
query = query,
|
| 187 |
+
k = 10, # 10 most similar documents.
|
| 188 |
+
pre_filter = { "page": { "$eq": 1 } } # Filtering on the page number.
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
pprint.pprint(results)
|
| 192 |
+
# ic(results) # Debugging purposes.
|
| 193 |
+
|
| 194 |
+
# Instantiate Weaviate Vector Search as a retriever
|
| 195 |
+
retriever = vector_search.as_retriever(
|
| 196 |
+
search_type = "similarity", # similarity, mmr, similarity_score_threshold. https://api.python.langchain.com/en/latest/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever
|
| 197 |
+
search_kwargs = {"k": 5, "score_threshold": 0.89}
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# Define a prompt template.
|
| 201 |
+
# Define a LangChain prompt template to instruct the LLM to use our documents as the context.
|
| 202 |
+
# LangChain passes these documents to the {context} input variable and the user's query to the {question} variable.
|
| 203 |
+
template = """
|
| 204 |
+
Use the following pieces of context to answer the question at the end.
|
| 205 |
+
If you do not know the answer, just say that you do not know, do not try to make up an answer.
|
| 206 |
+
|
| 207 |
+
{context}
|
| 208 |
+
|
| 209 |
+
Question: {question}
|
| 210 |
+
"""
|
| 211 |
+
|
| 212 |
+
custom_rag_prompt = PromptTemplate.from_template(template)
|
| 213 |
+
|
| 214 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.2) # Increasing the temperature, the model becomes more creative and takes longer for inference.
|
| 215 |
+
|
| 216 |
+
# Input : docs (list of documents)
|
| 217 |
+
# Output: A single string that concatenates the page_content of each document in the list, separated by two newline characters.
|
| 218 |
+
def format_docs(docs):
|
| 219 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
| 220 |
+
|
| 221 |
+
# Regular chain format is defined as: chain = context_setup | prompt_template | model | output_parser
|
| 222 |
+
|
| 223 |
+
rag_chain = (
|
| 224 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()} # Setup the context and question for the chain
|
| 225 |
+
| custom_rag_prompt # Apply a custom prompt template to format the input for the LLM
|
| 226 |
+
| llm # Process the formatted input through a language model (LLM)
|
| 227 |
+
| StrOutputParser() # Parse the LLM's output into a structured format
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# Prompt the chain.
|
| 231 |
+
query = "What is student favourite class"
|
| 232 |
+
answer = rag_chain.invoke(query)
|
| 233 |
+
|
| 234 |
+
print("\nQuestion: " + query)
|
| 235 |
+
print("Answer: " + answer)
|
| 236 |
+
|
| 237 |
+
# Return the source documents
|
| 238 |
+
documents = retriever.get_relevant_documents(query)
|
| 239 |
+
|
| 240 |
+
print("\nSource documents:")
|
| 241 |
+
pprint.pprint(documents)
|
| 242 |
+
|
| 243 |
+
# Input : query.
|
| 244 |
+
# Output: answer.
|
| 245 |
+
def get_response(query):
|
| 246 |
+
return rag_chain.invoke(query)
|
| 247 |
+
|
| 248 |
+
# Gradio application.
|
| 249 |
+
with gr.Blocks(theme=Base(), title="RAG QA App Using Spring 2024 Syllabuses PDFs, Weaviate As The Vector Database, and Gradio") as demo:
|
| 250 |
+
gr.Markdown(
|
| 251 |
+
"""
|
| 252 |
+
# RAG Question Answering App Using PDF Files, MongoDB As The Vector Database, and Gradio
|
| 253 |
+
""")
|
| 254 |
+
textbox = gr.Textbox(label="Question:")
|
| 255 |
+
with gr.Row():
|
| 256 |
+
button = gr.Button("Submit", variant="primary")
|
| 257 |
+
with gr.Column():
|
| 258 |
+
output1 = gr.Textbox(lines=1, max_lines=10, label="Answer:")
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# Call get_response function upon clicking the Submit button.
|
| 262 |
+
button.click(get_response, textbox, outputs=[output1])
|
| 263 |
+
|
| 264 |
+
demo.launch(share=True)
|
| 265 |
+
|
| 266 |
+
|