Spaces:
Running
on
L40S
Running
on
L40S
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import cv2
|
| 7 |
+
import tempfile
|
| 8 |
+
import moviepy.editor as mp
|
| 9 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
| 10 |
+
from diffusers.utils import export_to_video, load_image
|
| 11 |
+
|
| 12 |
+
# Import required modules from SkyReels
|
| 13 |
+
from skyreels_a1.models.transformer3d import CogVideoXTransformer3DModel
|
| 14 |
+
from skyreels_a1.skyreels_a1_i2v_pipeline import SkyReelsA1ImagePoseToVideoPipeline
|
| 15 |
+
from skyreels_a1.pre_process_lmk3d import FaceAnimationProcessor
|
| 16 |
+
from skyreels_a1.src.media_pipe.mp_utils import LMKExtractor
|
| 17 |
+
from skyreels_a1.src.media_pipe.draw_util_2d import FaceMeshVisualizer2d
|
| 18 |
+
|
| 19 |
+
from diffusers.models import AutoencoderKLCogVideoX
|
| 20 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
| 21 |
+
from diffposetalk.diffposetalk import DiffPoseTalk
|
| 22 |
+
|
| 23 |
+
from huggingface_hub import snapshot_download
|
| 24 |
+
|
| 25 |
+
os.system("pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt221/download.html")
|
| 26 |
+
|
| 27 |
+
os.makedirs("pretrained_models", exist_ok=True)
|
| 28 |
+
|
| 29 |
+
snapshot_download(
|
| 30 |
+
repo_id="multimodalart/diffposetalk",
|
| 31 |
+
local_dir="pretrained_models/diffposetalk"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
snapshot_download(
|
| 35 |
+
repo_id="Skywork/SkyReels-A1",
|
| 36 |
+
local_dir="pretrained_models/FLAME",
|
| 37 |
+
allow_patterns="extra_models/FLAME/**"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
snapshot_download(
|
| 41 |
+
repo_id="Skywork/SkyReels-A1",
|
| 42 |
+
local_dir="pretrained_models/mediapipe",
|
| 43 |
+
allow_patterns="extra_models/mediapipe/**"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
snapshot_download(
|
| 47 |
+
repo_id="Skywork/SkyReels-A1",
|
| 48 |
+
local_dir="pretrained_models/smirk",
|
| 49 |
+
allow_patterns="extra_models/smirk/**"
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
snapshot_download(
|
| 53 |
+
repo_id="Skywork/SkyReels-A1",
|
| 54 |
+
local_dir="pretrained_models/SkyReels-A1-5B",
|
| 55 |
+
allow_patterns="SkyReels-A1-5B/**"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Helper functions from the original script
|
| 60 |
+
def parse_video(driving_frames, max_frame_num, fps=25):
|
| 61 |
+
video_length = len(driving_frames)
|
| 62 |
+
duration = video_length / fps
|
| 63 |
+
target_times = np.arange(0, duration, 1/12)
|
| 64 |
+
frame_indices = (target_times * fps).astype(np.int32)
|
| 65 |
+
|
| 66 |
+
frame_indices = frame_indices[frame_indices < video_length]
|
| 67 |
+
new_driving_frames = []
|
| 68 |
+
for idx in frame_indices:
|
| 69 |
+
new_driving_frames.append(driving_frames[idx])
|
| 70 |
+
if len(new_driving_frames) >= max_frame_num - 1:
|
| 71 |
+
break
|
| 72 |
+
|
| 73 |
+
video_lenght_add = max_frame_num - len(new_driving_frames) - 1
|
| 74 |
+
new_driving_frames = [new_driving_frames[0]]*2 + new_driving_frames[1:len(new_driving_frames)-1] + [new_driving_frames[-1]] * video_lenght_add
|
| 75 |
+
return new_driving_frames
|
| 76 |
+
|
| 77 |
+
def write_mp4(video_path, samples, fps=12):
|
| 78 |
+
clip = mp.ImageSequenceClip(samples, fps=fps)
|
| 79 |
+
clip.write_videofile(video_path, audio_codec="aac", codec="libx264",
|
| 80 |
+
ffmpeg_params=["-crf", "18", "-preset", "slow"])
|
| 81 |
+
|
| 82 |
+
def save_video_with_audio(video_path, audio_path, save_path):
|
| 83 |
+
video_clip = mp.VideoFileClip(video_path)
|
| 84 |
+
audio_clip = mp.AudioFileClip(audio_path)
|
| 85 |
+
|
| 86 |
+
if audio_clip.duration > video_clip.duration:
|
| 87 |
+
audio_clip = audio_clip.subclip(0, video_clip.duration)
|
| 88 |
+
|
| 89 |
+
video_with_audio = video_clip.set_audio(audio_clip)
|
| 90 |
+
video_with_audio.write_videofile(save_path, fps=12, codec="libx264", audio_codec="aac")
|
| 91 |
+
|
| 92 |
+
# Clean up
|
| 93 |
+
video_clip.close()
|
| 94 |
+
audio_clip.close()
|
| 95 |
+
return save_path
|
| 96 |
+
|
| 97 |
+
# Global parameters
|
| 98 |
+
model_name = "pretrained_models/SkyReels-A1-5B/"
|
| 99 |
+
siglip_name = "pretrained_models/SkyReels-A1-5B/siglip-so400m-patch14-384"
|
| 100 |
+
weight_dtype = torch.bfloat16
|
| 101 |
+
max_frame_num = 49
|
| 102 |
+
sample_size = [480, 720]
|
| 103 |
+
|
| 104 |
+
# Preload all models in global context
|
| 105 |
+
print("Loading models...")
|
| 106 |
+
|
| 107 |
+
# Load LMK extractor and processors
|
| 108 |
+
lmk_extractor = LMKExtractor()
|
| 109 |
+
processor = FaceAnimationProcessor(checkpoint='pretrained_models/smirk/SMIRK_em1.pt')
|
| 110 |
+
vis = FaceMeshVisualizer2d(forehead_edge=False, draw_head=False, draw_iris=False)
|
| 111 |
+
face_helper = FaceRestoreHelper(upscale_factor=1, face_size=512, crop_ratio=(1, 1),
|
| 112 |
+
det_model='retinaface_resnet50', save_ext='png', device="cuda")
|
| 113 |
+
|
| 114 |
+
# Load siglip visual encoder
|
| 115 |
+
siglip = SiglipVisionModel.from_pretrained(siglip_name)
|
| 116 |
+
siglip_normalize = SiglipImageProcessor.from_pretrained(siglip_name)
|
| 117 |
+
|
| 118 |
+
# Load diffposetalk
|
| 119 |
+
diffposetalk = DiffPoseTalk()
|
| 120 |
+
|
| 121 |
+
# Load SkyReels models
|
| 122 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
| 123 |
+
model_name,
|
| 124 |
+
subfolder="transformer"
|
| 125 |
+
).to(weight_dtype)
|
| 126 |
+
|
| 127 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
| 128 |
+
model_name,
|
| 129 |
+
subfolder="vae"
|
| 130 |
+
).to(weight_dtype)
|
| 131 |
+
|
| 132 |
+
lmk_encoder = AutoencoderKLCogVideoX.from_pretrained(
|
| 133 |
+
model_name,
|
| 134 |
+
subfolder="pose_guider",
|
| 135 |
+
).to(weight_dtype)
|
| 136 |
+
|
| 137 |
+
# Set up pipeline
|
| 138 |
+
pipe = SkyReelsA1ImagePoseToVideoPipeline.from_pretrained(
|
| 139 |
+
model_name,
|
| 140 |
+
transformer=transformer,
|
| 141 |
+
vae=vae,
|
| 142 |
+
lmk_encoder=lmk_encoder,
|
| 143 |
+
image_encoder=siglip,
|
| 144 |
+
feature_extractor=siglip_normalize,
|
| 145 |
+
torch_dtype=torch.bfloat16
|
| 146 |
+
)
|
| 147 |
+
pipe.to("cuda")
|
| 148 |
+
pipe.transformer = torch.compile(pipe.transformer)
|
| 149 |
+
pipe.vae = torch.compile(pipe.vae)
|
| 150 |
+
# pipe.enable_model_cpu_offload()
|
| 151 |
+
# pipe.vae.enable_tiling()
|
| 152 |
+
|
| 153 |
+
print("Models loaded successfully!")
|
| 154 |
+
|
| 155 |
+
def process_image_audio(image_path, audio_path, guidance_scale=3.0, steps=10, progress=gr.Progress()):
|
| 156 |
+
progress(0.1, desc="Processing inputs...")
|
| 157 |
+
# Create a directory for outputs if it doesn't exist
|
| 158 |
+
output_dir = "gradio_outputs"
|
| 159 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 160 |
+
|
| 161 |
+
# Create temp files for processing
|
| 162 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video_file, \
|
| 163 |
+
tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_output_file:
|
| 164 |
+
temp_video_path = temp_video_file.name
|
| 165 |
+
final_output_path = temp_output_file.name
|
| 166 |
+
|
| 167 |
+
# Set seed
|
| 168 |
+
seed = 43
|
| 169 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 170 |
+
|
| 171 |
+
progress(0.2, desc="Processing image...")
|
| 172 |
+
# Load and process image
|
| 173 |
+
image = load_image(image=image_path)
|
| 174 |
+
image = processor.crop_and_resize(image, sample_size[0], sample_size[1])
|
| 175 |
+
|
| 176 |
+
# Crop face
|
| 177 |
+
ref_image, x1, y1 = processor.face_crop(np.array(image))
|
| 178 |
+
face_h, face_w, _ = ref_image.shape
|
| 179 |
+
source_image = ref_image
|
| 180 |
+
|
| 181 |
+
progress(0.3, desc="Processing facial landmarks...")
|
| 182 |
+
# Process source image
|
| 183 |
+
source_outputs, source_tform, image_original = processor.process_source_image(source_image)
|
| 184 |
+
|
| 185 |
+
progress(0.4, desc="Processing audio...")
|
| 186 |
+
# Process audio and generate driving outputs
|
| 187 |
+
driving_outputs = diffposetalk.infer_from_file(
|
| 188 |
+
audio_path,
|
| 189 |
+
source_outputs["shape_params"].view(-1)[:100].detach().cpu().numpy()
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
progress(0.5, desc="Processing landmarks from coefficients...")
|
| 193 |
+
# Process landmarks
|
| 194 |
+
out_frames = processor.preprocess_lmk3d_from_coef(
|
| 195 |
+
source_outputs, source_tform, image_original.shape, driving_outputs
|
| 196 |
+
)
|
| 197 |
+
out_frames = parse_video(out_frames, max_frame_num)
|
| 198 |
+
|
| 199 |
+
rescale_motions = np.zeros_like(image)[np.newaxis, :].repeat(48, axis=0)
|
| 200 |
+
for ii in range(rescale_motions.shape[0]):
|
| 201 |
+
rescale_motions[ii][y1:y1+face_h, x1:x1+face_w] = out_frames[ii]
|
| 202 |
+
|
| 203 |
+
ref_image_resized = cv2.resize(ref_image, (512, 512))
|
| 204 |
+
ref_lmk = lmk_extractor(ref_image_resized[:, :, ::-1])
|
| 205 |
+
|
| 206 |
+
ref_img = vis.draw_landmarks_v3(
|
| 207 |
+
(512, 512), (face_w, face_h),
|
| 208 |
+
ref_lmk['lmks'].astype(np.float32), normed=True
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
first_motion = np.zeros_like(np.array(image))
|
| 212 |
+
first_motion[y1:y1+face_h, x1:x1+face_w] = ref_img
|
| 213 |
+
first_motion = first_motion[np.newaxis, :]
|
| 214 |
+
|
| 215 |
+
motions = np.concatenate([first_motion, rescale_motions])
|
| 216 |
+
input_video = motions[:max_frame_num]
|
| 217 |
+
|
| 218 |
+
# Face alignment
|
| 219 |
+
face_helper.clean_all()
|
| 220 |
+
face_helper.read_image(np.array(image)[:, :, ::-1])
|
| 221 |
+
face_helper.get_face_landmarks_5(only_center_face=True)
|
| 222 |
+
face_helper.align_warp_face()
|
| 223 |
+
align_face = face_helper.cropped_faces[0]
|
| 224 |
+
image_face = align_face[:, :, ::-1]
|
| 225 |
+
|
| 226 |
+
# Prepare input video
|
| 227 |
+
input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
|
| 228 |
+
input_video = input_video / 255
|
| 229 |
+
|
| 230 |
+
progress(0.6, desc="Generating animation (this may take a while)...")
|
| 231 |
+
# Generate video
|
| 232 |
+
#with torch.no_grad():
|
| 233 |
+
sample = pipe(
|
| 234 |
+
image=image,
|
| 235 |
+
image_face=image_face,
|
| 236 |
+
control_video=input_video,
|
| 237 |
+
prompt="",
|
| 238 |
+
negative_prompt="",
|
| 239 |
+
height=480,
|
| 240 |
+
width=720,
|
| 241 |
+
num_frames=49,
|
| 242 |
+
generator=generator,
|
| 243 |
+
guidance_scale=guidance_scale,
|
| 244 |
+
num_inference_steps=steps,
|
| 245 |
+
)
|
| 246 |
+
out_samples = sample.frames[0]
|
| 247 |
+
|
| 248 |
+
out_samples = out_samples[2:] # Skip first two frames
|
| 249 |
+
|
| 250 |
+
progress(0.8, desc="Creating output video...")
|
| 251 |
+
# Export video
|
| 252 |
+
export_to_video(out_samples, temp_video_path, fps=12)
|
| 253 |
+
|
| 254 |
+
progress(0.9, desc="Adding audio to video...")
|
| 255 |
+
# Add audio to video
|
| 256 |
+
result_path = save_video_with_audio(temp_video_path, audio_path, final_output_path)
|
| 257 |
+
|
| 258 |
+
# Create side-by-side comparison
|
| 259 |
+
target_h, target_w = sample_size[0], sample_size[1]
|
| 260 |
+
final_images = []
|
| 261 |
+
for i in range(len(out_samples)):
|
| 262 |
+
frame1 = image
|
| 263 |
+
frame2 = Image.fromarray(np.array(out_samples[i])).convert("RGB")
|
| 264 |
+
|
| 265 |
+
result = Image.new('RGB', (target_w * 2, target_h))
|
| 266 |
+
result.paste(frame1, (0, 0))
|
| 267 |
+
result.paste(frame2, (target_w, 0))
|
| 268 |
+
final_images.append(np.array(result))
|
| 269 |
+
|
| 270 |
+
comparison_path = os.path.join(output_dir, "comparison.mp4")
|
| 271 |
+
write_mp4(comparison_path, final_images, fps=12)
|
| 272 |
+
|
| 273 |
+
# Add audio to comparison video
|
| 274 |
+
comparison_with_audio = os.path.join(output_dir, "comparison_with_audio.mp4")
|
| 275 |
+
comparison_with_audio = save_video_with_audio(comparison_path, audio_path, comparison_with_audio)
|
| 276 |
+
|
| 277 |
+
progress(1.0, desc="Done!")
|
| 278 |
+
return result_path, comparison_with_audio
|
| 279 |
+
|
| 280 |
+
# Create Gradio interface
|
| 281 |
+
with gr.Blocks(title="SkyReels A1 Face Animation") as app:
|
| 282 |
+
gr.Markdown("# SkyReels A1 Face Animation")
|
| 283 |
+
gr.Markdown("Upload a portrait image and an audio file to animate the face")
|
| 284 |
+
|
| 285 |
+
with gr.Row():
|
| 286 |
+
with gr.Column():
|
| 287 |
+
image_input = gr.Image(type="filepath", label="Portrait Image")
|
| 288 |
+
audio_input = gr.Audio(type="filepath", label="Driving Audio")
|
| 289 |
+
|
| 290 |
+
with gr.Row():
|
| 291 |
+
guidance_scale = gr.Slider(minimum=1.0, maximum=7.0, value=3.0, step=0.1, label="Guidance Scale")
|
| 292 |
+
inference_steps = gr.Slider(minimum=5, maximum=30, value=10, step=1, label="Inference Steps")
|
| 293 |
+
|
| 294 |
+
generate_button = gr.Button("Generate Animation", variant="primary")
|
| 295 |
+
|
| 296 |
+
with gr.Column():
|
| 297 |
+
output_video = gr.Video(label="Animation Result")
|
| 298 |
+
comparison_video = gr.Video(label="Side-by-Side Comparison")
|
| 299 |
+
|
| 300 |
+
generate_button.click(
|
| 301 |
+
fn=process_image_audio,
|
| 302 |
+
inputs=[image_input, audio_input, guidance_scale, inference_steps],
|
| 303 |
+
outputs=[output_video, comparison_video]
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
gr.Markdown("""
|
| 307 |
+
## Instructions
|
| 308 |
+
1. Upload a portrait image (frontal face works best)
|
| 309 |
+
2. Upload an audio file (wav format recommended)
|
| 310 |
+
3. Adjust parameters if needed
|
| 311 |
+
4. Click "Generate Animation" to create the video
|
| 312 |
+
|
| 313 |
+
Note: Processing may take several minutes depending on your hardware.
|
| 314 |
+
""")
|
| 315 |
+
|
| 316 |
+
if __name__ == "__main__":
|
| 317 |
+
app.launch(share=True)
|