Spaces:
Sleeping
Sleeping
allow file uplaod
Browse files
app.py
CHANGED
|
@@ -14,6 +14,8 @@ import os
|
|
| 14 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 15 |
import torch
|
| 16 |
from PIL import Image
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Cache for loaded model and processor
|
| 19 |
default_cache = {'model_id': None, 'processor': None, 'model': None, 'device': None}
|
|
@@ -46,8 +48,34 @@ def update_model(model_id, device):
|
|
| 46 |
model.eval()
|
| 47 |
model_cache.update({'model_id': model_id, 'processor': processor, 'model': model, 'device': device})
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
@spaces.GPU
|
| 50 |
def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device):
|
|
|
|
| 51 |
debug_msgs = []
|
| 52 |
update_model(model_id, device)
|
| 53 |
processor = model_cache['processor']
|
|
@@ -115,6 +143,97 @@ def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device):
|
|
| 115 |
|
| 116 |
return caption, '\n'.join(debug_msgs)
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
def main():
|
| 120 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -123,6 +242,7 @@ def main():
|
|
| 123 |
'HuggingFaceTB/SmolVLM2-500M-Video-Instruct',
|
| 124 |
'HuggingFaceTB/SmolVLM2-2.2B-Instruct'
|
| 125 |
]
|
|
|
|
| 126 |
# Determine available devices
|
| 127 |
device_options = ['cpu']
|
| 128 |
if torch.cuda.is_available():
|
|
@@ -133,28 +253,75 @@ def main():
|
|
| 133 |
default_device = 'cuda' if torch.cuda.is_available() else ('xpu' if has_xpu else 'cpu')
|
| 134 |
|
| 135 |
with gr.Blocks() as demo:
|
| 136 |
-
gr.Markdown('## 🎥 Real-Time Webcam Captioning with SmolVLM2 (Transformers)')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
with gr.Row():
|
| 139 |
-
model_dd
|
| 140 |
device_dd = gr.Dropdown(device_options, value=default_device, label='Device')
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
caption_tb = gr.Textbox(interactive=False, label='Caption')
|
| 148 |
-
log_tb
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
cam.stream(
|
| 151 |
fn=caption_frame,
|
| 152 |
inputs=[cam, model_dd, interval, sys_p, usr_p, device_dd],
|
| 153 |
outputs=[caption_tb, log_tb],
|
| 154 |
time_limit=600
|
| 155 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
# Enable Gradio's async event queue
|
| 158 |
demo.queue()
|
| 159 |
|
| 160 |
# Launch the app
|
|
@@ -162,4 +329,4 @@ def main():
|
|
| 162 |
|
| 163 |
|
| 164 |
if __name__ == '__main__':
|
| 165 |
-
main()
|
|
|
|
| 14 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 15 |
import torch
|
| 16 |
from PIL import Image
|
| 17 |
+
import numpy as np
|
| 18 |
+
from pathlib import Path
|
| 19 |
|
| 20 |
# Cache for loaded model and processor
|
| 21 |
default_cache = {'model_id': None, 'processor': None, 'model': None, 'device': None}
|
|
|
|
| 48 |
model.eval()
|
| 49 |
model_cache.update({'model_id': model_id, 'processor': processor, 'model': model, 'device': device})
|
| 50 |
|
| 51 |
+
def extract_frames_from_video(video_path, max_frames=10):
|
| 52 |
+
"""Extract frames from video file for processing"""
|
| 53 |
+
cap = cv2.VideoCapture(video_path)
|
| 54 |
+
frames = []
|
| 55 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 56 |
+
|
| 57 |
+
# Calculate step size to extract evenly distributed frames
|
| 58 |
+
step = max(1, frame_count // max_frames)
|
| 59 |
+
|
| 60 |
+
frame_idx = 0
|
| 61 |
+
while cap.isOpened():
|
| 62 |
+
ret, frame = cap.read()
|
| 63 |
+
if not ret:
|
| 64 |
+
break
|
| 65 |
+
|
| 66 |
+
if frame_idx % step == 0:
|
| 67 |
+
frames.append(frame)
|
| 68 |
+
if len(frames) >= max_frames:
|
| 69 |
+
break
|
| 70 |
+
|
| 71 |
+
frame_idx += 1
|
| 72 |
+
|
| 73 |
+
cap.release()
|
| 74 |
+
return frames
|
| 75 |
+
|
| 76 |
@spaces.GPU
|
| 77 |
def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device):
|
| 78 |
+
"""Caption a single frame (used for webcam streaming)"""
|
| 79 |
debug_msgs = []
|
| 80 |
update_model(model_id, device)
|
| 81 |
processor = model_cache['processor']
|
|
|
|
| 143 |
|
| 144 |
return caption, '\n'.join(debug_msgs)
|
| 145 |
|
| 146 |
+
@spaces.GPU
|
| 147 |
+
def process_video_file(video_file, model_id, sys_prompt, usr_prompt, device, max_frames):
|
| 148 |
+
"""Process uploaded video file and return captions for multiple frames"""
|
| 149 |
+
if video_file is None:
|
| 150 |
+
return "No video file uploaded", ""
|
| 151 |
+
|
| 152 |
+
debug_msgs = []
|
| 153 |
+
update_model(model_id, device)
|
| 154 |
+
processor = model_cache['processor']
|
| 155 |
+
model = model_cache['model']
|
| 156 |
+
|
| 157 |
+
try:
|
| 158 |
+
# Extract frames from video
|
| 159 |
+
t0 = time.time()
|
| 160 |
+
frames = extract_frames_from_video(video_file, max_frames)
|
| 161 |
+
debug_msgs.append(f'Extracted {len(frames)} frames in {int((time.time()-t0)*1000)} ms')
|
| 162 |
+
|
| 163 |
+
if not frames:
|
| 164 |
+
return "No frames could be extracted from the video", '\n'.join(debug_msgs)
|
| 165 |
+
|
| 166 |
+
captions = []
|
| 167 |
+
|
| 168 |
+
for i, frame in enumerate(frames):
|
| 169 |
+
# Preprocess frame
|
| 170 |
+
t1 = time.time()
|
| 171 |
+
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 172 |
+
pil_img = Image.fromarray(rgb)
|
| 173 |
+
temp_path = f'frame_{i}.jpg'
|
| 174 |
+
pil_img.save(temp_path, format='JPEG', quality=50)
|
| 175 |
+
|
| 176 |
+
# Prepare multimodal chat messages
|
| 177 |
+
messages = [
|
| 178 |
+
{'role': 'system', 'content': [{'type': 'text', 'text': sys_prompt}]},
|
| 179 |
+
{'role': 'user', 'content': [
|
| 180 |
+
{'type': 'image', 'url': temp_path},
|
| 181 |
+
{'type': 'text', 'text': usr_prompt}
|
| 182 |
+
]}
|
| 183 |
+
]
|
| 184 |
+
|
| 185 |
+
# Tokenize and encode
|
| 186 |
+
inputs = processor.apply_chat_template(
|
| 187 |
+
messages,
|
| 188 |
+
add_generation_prompt=True,
|
| 189 |
+
tokenize=True,
|
| 190 |
+
return_dict=True,
|
| 191 |
+
return_tensors='pt'
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Move inputs to correct device and dtype
|
| 195 |
+
param_dtype = next(model.parameters()).dtype
|
| 196 |
+
cast_inputs = {}
|
| 197 |
+
for k, v in inputs.items():
|
| 198 |
+
if isinstance(v, torch.Tensor):
|
| 199 |
+
if v.dtype.is_floating_point:
|
| 200 |
+
cast_inputs[k] = v.to(device=model.device, dtype=param_dtype)
|
| 201 |
+
else:
|
| 202 |
+
cast_inputs[k] = v.to(device=model.device)
|
| 203 |
+
else:
|
| 204 |
+
cast_inputs[k] = v
|
| 205 |
+
inputs = cast_inputs
|
| 206 |
+
|
| 207 |
+
# Inference
|
| 208 |
+
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=128)
|
| 209 |
+
|
| 210 |
+
# Decode and strip history
|
| 211 |
+
raw = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 212 |
+
if "Assistant:" in raw:
|
| 213 |
+
caption = raw.split("Assistant:")[-1].strip()
|
| 214 |
+
else:
|
| 215 |
+
lines = raw.splitlines()
|
| 216 |
+
caption = lines[-1].strip() if len(lines) > 1 else raw.strip()
|
| 217 |
+
|
| 218 |
+
captions.append(f"Frame {i+1}: {caption}")
|
| 219 |
+
|
| 220 |
+
# Clean up temp file
|
| 221 |
+
if os.path.exists(temp_path):
|
| 222 |
+
os.remove(temp_path)
|
| 223 |
+
|
| 224 |
+
debug_msgs.append(f'Frame {i+1} processed in {int((time.time()-t1)*1000)} ms')
|
| 225 |
+
|
| 226 |
+
return '\n\n'.join(captions), '\n'.join(debug_msgs)
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
return f"Error processing video: {str(e)}", '\n'.join(debug_msgs)
|
| 230 |
+
|
| 231 |
+
def toggle_input_mode(input_mode):
|
| 232 |
+
"""Toggle between webcam and video file input"""
|
| 233 |
+
if input_mode == "Webcam":
|
| 234 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
| 235 |
+
else: # Video File
|
| 236 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 237 |
|
| 238 |
def main():
|
| 239 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 242 |
'HuggingFaceTB/SmolVLM2-500M-Video-Instruct',
|
| 243 |
'HuggingFaceTB/SmolVLM2-2.2B-Instruct'
|
| 244 |
]
|
| 245 |
+
|
| 246 |
# Determine available devices
|
| 247 |
device_options = ['cpu']
|
| 248 |
if torch.cuda.is_available():
|
|
|
|
| 253 |
default_device = 'cuda' if torch.cuda.is_available() else ('xpu' if has_xpu else 'cpu')
|
| 254 |
|
| 255 |
with gr.Blocks() as demo:
|
| 256 |
+
gr.Markdown('## 🎥 Real-Time Webcam & Video File Captioning with SmolVLM2 (Transformers)')
|
| 257 |
+
|
| 258 |
+
with gr.Row():
|
| 259 |
+
input_mode = gr.Radio(
|
| 260 |
+
choices=["Webcam", "Video File"],
|
| 261 |
+
value="Webcam",
|
| 262 |
+
label="Input Mode"
|
| 263 |
+
)
|
| 264 |
|
| 265 |
with gr.Row():
|
| 266 |
+
model_dd = gr.Dropdown(model_choices, value=model_choices[0], label='Model ID')
|
| 267 |
device_dd = gr.Dropdown(device_options, value=default_device, label='Device')
|
| 268 |
|
| 269 |
+
# Webcam-specific controls
|
| 270 |
+
with gr.Row() as webcam_controls:
|
| 271 |
+
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
|
| 272 |
+
|
| 273 |
+
# Video file-specific controls
|
| 274 |
+
with gr.Row(visible=False) as video_controls:
|
| 275 |
+
max_frames = gr.Slider(1, 20, step=1, value=5, label='Max Frames to Process')
|
| 276 |
+
|
| 277 |
+
sys_p = gr.Textbox(lines=2, value='Describe the key action', label='System Prompt')
|
| 278 |
+
usr_p = gr.Textbox(lines=1, value='What is happening in this image?', label='User Prompt')
|
| 279 |
+
|
| 280 |
+
# Input components
|
| 281 |
+
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
|
| 282 |
+
video_file = gr.File(
|
| 283 |
+
label="Upload Video File",
|
| 284 |
+
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
| 285 |
+
visible=False
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
# Process button for video files
|
| 289 |
+
process_btn = gr.Button("Process Video", visible=False)
|
| 290 |
|
| 291 |
+
# Output components
|
| 292 |
caption_tb = gr.Textbox(interactive=False, label='Caption')
|
| 293 |
+
log_tb = gr.Textbox(lines=4, interactive=False, label='Debug Log')
|
| 294 |
|
| 295 |
+
# Toggle input mode
|
| 296 |
+
input_mode.change(
|
| 297 |
+
fn=toggle_input_mode,
|
| 298 |
+
inputs=[input_mode],
|
| 299 |
+
outputs=[cam, video_file, process_btn]
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Also toggle the control panels
|
| 303 |
+
input_mode.change(
|
| 304 |
+
fn=lambda mode: (gr.update(visible=mode=="Webcam"), gr.update(visible=mode=="Video File")),
|
| 305 |
+
inputs=[input_mode],
|
| 306 |
+
outputs=[webcam_controls, video_controls]
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
# Webcam streaming
|
| 310 |
cam.stream(
|
| 311 |
fn=caption_frame,
|
| 312 |
inputs=[cam, model_dd, interval, sys_p, usr_p, device_dd],
|
| 313 |
outputs=[caption_tb, log_tb],
|
| 314 |
time_limit=600
|
| 315 |
)
|
| 316 |
+
|
| 317 |
+
# Video file processing
|
| 318 |
+
process_btn.click(
|
| 319 |
+
fn=process_video_file,
|
| 320 |
+
inputs=[video_file, model_dd, sys_p, usr_p, device_dd, max_frames],
|
| 321 |
+
outputs=[caption_tb, log_tb]
|
| 322 |
+
)
|
| 323 |
|
| 324 |
+
# Enable Gradio's async event queue
|
| 325 |
demo.queue()
|
| 326 |
|
| 327 |
# Launch the app
|
|
|
|
| 329 |
|
| 330 |
|
| 331 |
if __name__ == '__main__':
|
| 332 |
+
main()
|