Spaces:
Runtime error
Runtime error
Upload data_dataset_collector.py
Browse files- data/data_dataset_collector.py +474 -0
data/data_dataset_collector.py
ADDED
|
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Dataset Collector for ChipVerifyAI
|
| 4 |
+
Automated collection and preparation of chip verification datasets
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import git
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import numpy as np
|
| 11 |
+
import requests
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from datasets import load_dataset
|
| 14 |
+
from typing import Dict, List, Any
|
| 15 |
+
import zipfile
|
| 16 |
+
import json
|
| 17 |
+
|
| 18 |
+
class DatasetCollector:
|
| 19 |
+
"""Collect and prepare datasets for chip verification ML/LLM training"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, data_dir: str = "data/datasets"):
|
| 22 |
+
self.data_dir = Path(data_dir)
|
| 23 |
+
self.data_dir.mkdir(parents=True, exist_ok=True)
|
| 24 |
+
self.collected_datasets = {}
|
| 25 |
+
|
| 26 |
+
def collect_all_datasets(self) -> Dict[str, Any]:
|
| 27 |
+
"""Collect all available datasets for training"""
|
| 28 |
+
print("📊 Starting comprehensive dataset collection...")
|
| 29 |
+
|
| 30 |
+
# Primary datasets from GitHub
|
| 31 |
+
self._collect_wujian100()
|
| 32 |
+
self._collect_opencores_projects()
|
| 33 |
+
self._collect_riscv_tests()
|
| 34 |
+
|
| 35 |
+
# HuggingFace datasets
|
| 36 |
+
self._collect_pyranet_verilog()
|
| 37 |
+
|
| 38 |
+
# Create synthetic datasets
|
| 39 |
+
self._create_synthetic_datasets()
|
| 40 |
+
|
| 41 |
+
print(f"✅ Dataset collection completed! Collected {len(self.collected_datasets)} datasets")
|
| 42 |
+
return self.collected_datasets
|
| 43 |
+
|
| 44 |
+
def _collect_wujian100(self):
|
| 45 |
+
"""Collect Wujian100 RISC-V SoC dataset"""
|
| 46 |
+
repo_path = self.data_dir / "wujian100_open"
|
| 47 |
+
|
| 48 |
+
if not repo_path.exists():
|
| 49 |
+
try:
|
| 50 |
+
print("📥 Cloning Wujian100 repository...")
|
| 51 |
+
git.Repo.clone_from("https://github.com/XUANTIE-RV/wujian100_open.git", repo_path)
|
| 52 |
+
print("✅ Wujian100 dataset collected")
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"❌ Failed to collect Wujian100: {e}")
|
| 55 |
+
return
|
| 56 |
+
else:
|
| 57 |
+
print("✅ Wujian100 dataset already exists")
|
| 58 |
+
|
| 59 |
+
# Parse RTL files
|
| 60 |
+
rtl_files = list(repo_path.rglob("*.v")) + list(repo_path.rglob("*.sv"))
|
| 61 |
+
|
| 62 |
+
self.collected_datasets['wujian100'] = {
|
| 63 |
+
'path': str(repo_path),
|
| 64 |
+
'type': 'rtl_designs',
|
| 65 |
+
'file_count': len(rtl_files),
|
| 66 |
+
'size_mb': sum(f.stat().st_size for f in rtl_files) / (1024*1024),
|
| 67 |
+
'description': 'Complete RISC-V SoC design with verification infrastructure'
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
def _collect_opencores_projects(self):
|
| 71 |
+
"""Collect OpenCores RTL projects"""
|
| 72 |
+
opencores_dir = self.data_dir / "opencores"
|
| 73 |
+
opencores_dir.mkdir(exist_ok=True)
|
| 74 |
+
|
| 75 |
+
projects = [
|
| 76 |
+
("uart16550", "https://github.com/freecores/uart16550.git"),
|
| 77 |
+
("spi", "https://github.com/freecores/spi.git"),
|
| 78 |
+
("i2c", "https://github.com/freecores/i2c.git"),
|
| 79 |
+
("wb_dma", "https://github.com/freecores/wb_dma.git"),
|
| 80 |
+
("aes", "https://github.com/freecores/aes_crypto_core.git"),
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
collected_projects = []
|
| 84 |
+
total_files = 0
|
| 85 |
+
total_size = 0
|
| 86 |
+
|
| 87 |
+
for project_name, repo_url in projects:
|
| 88 |
+
project_path = opencores_dir / project_name
|
| 89 |
+
|
| 90 |
+
if not project_path.exists():
|
| 91 |
+
try:
|
| 92 |
+
print(f"📥 Cloning {project_name}...")
|
| 93 |
+
git.Repo.clone_from(repo_url, project_path)
|
| 94 |
+
print(f"✅ {project_name} collected")
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"❌ Failed to collect {project_name}: {e}")
|
| 97 |
+
continue
|
| 98 |
+
|
| 99 |
+
# Count files and size
|
| 100 |
+
rtl_files = list(project_path.rglob("*.v")) + list(project_path.rglob("*.sv"))
|
| 101 |
+
if rtl_files:
|
| 102 |
+
file_count = len(rtl_files)
|
| 103 |
+
size_mb = sum(f.stat().st_size for f in rtl_files) / (1024*1024)
|
| 104 |
+
|
| 105 |
+
collected_projects.append({
|
| 106 |
+
'name': project_name,
|
| 107 |
+
'files': file_count,
|
| 108 |
+
'size_mb': size_mb
|
| 109 |
+
})
|
| 110 |
+
|
| 111 |
+
total_files += file_count
|
| 112 |
+
total_size += size_mb
|
| 113 |
+
|
| 114 |
+
self.collected_datasets['opencores'] = {
|
| 115 |
+
'path': str(opencores_dir),
|
| 116 |
+
'type': 'rtl_designs',
|
| 117 |
+
'projects': collected_projects,
|
| 118 |
+
'total_files': total_files,
|
| 119 |
+
'total_size_mb': total_size,
|
| 120 |
+
'description': 'OpenCores RTL IP projects'
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
def _collect_riscv_tests(self):
|
| 124 |
+
"""Collect RISC-V architecture test suite"""
|
| 125 |
+
riscv_path = self.data_dir / "riscv_arch_test"
|
| 126 |
+
|
| 127 |
+
if not riscv_path.exists():
|
| 128 |
+
try:
|
| 129 |
+
print("📥 Cloning RISC-V architecture tests...")
|
| 130 |
+
git.Repo.clone_from("https://github.com/riscv-non-isa/riscv-arch-test.git", riscv_path)
|
| 131 |
+
print("✅ RISC-V tests collected")
|
| 132 |
+
except Exception as e:
|
| 133 |
+
print(f"❌ Failed to collect RISC-V tests: {e}")
|
| 134 |
+
return
|
| 135 |
+
|
| 136 |
+
# Count test files
|
| 137 |
+
test_files = list(riscv_path.rglob("*.S")) + list(riscv_path.rglob("*.s"))
|
| 138 |
+
|
| 139 |
+
self.collected_datasets['riscv_tests'] = {
|
| 140 |
+
'path': str(riscv_path),
|
| 141 |
+
'type': 'test_suite',
|
| 142 |
+
'file_count': len(test_files),
|
| 143 |
+
'size_mb': sum(f.stat().st_size for f in test_files) / (1024*1024),
|
| 144 |
+
'description': 'RISC-V architecture compliance tests'
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
def _collect_pyranet_verilog(self):
|
| 148 |
+
"""Collect PyraNet Verilog dataset from HuggingFace"""
|
| 149 |
+
try:
|
| 150 |
+
print("📥 Loading PyraNet-Verilog from HuggingFace...")
|
| 151 |
+
dataset = load_dataset("bnadimi/PyraNet-Verilog")
|
| 152 |
+
|
| 153 |
+
pyranet_dir = self.data_dir / "pyranet_verilog"
|
| 154 |
+
pyranet_dir.mkdir(exist_ok=True)
|
| 155 |
+
|
| 156 |
+
total_samples = 0
|
| 157 |
+
for split_name, split_data in dataset.items():
|
| 158 |
+
df = pd.DataFrame(split_data)
|
| 159 |
+
csv_path = pyranet_dir / f"{split_name}.csv"
|
| 160 |
+
df.to_csv(csv_path, index=False)
|
| 161 |
+
total_samples += len(df)
|
| 162 |
+
|
| 163 |
+
self.collected_datasets['pyranet_verilog'] = {
|
| 164 |
+
'path': str(pyranet_dir),
|
| 165 |
+
'type': 'verilog_dataset',
|
| 166 |
+
'total_samples': total_samples,
|
| 167 |
+
'splits': list(dataset.keys()),
|
| 168 |
+
'description': 'Large-scale Verilog code dataset with descriptions'
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
print("✅ PyraNet-Verilog dataset collected")
|
| 172 |
+
|
| 173 |
+
except Exception as e:
|
| 174 |
+
print(f"❌ Failed to collect PyraNet-Verilog: {e}")
|
| 175 |
+
|
| 176 |
+
def _create_synthetic_datasets(self):
|
| 177 |
+
"""Create synthetic datasets for training"""
|
| 178 |
+
print("🎯 Creating synthetic datasets...")
|
| 179 |
+
|
| 180 |
+
# 1. Verification logs
|
| 181 |
+
logs_df = self._create_verification_logs(n_samples=10000)
|
| 182 |
+
logs_path = self.data_dir / "synthetic_verification_logs.csv"
|
| 183 |
+
logs_df.to_csv(logs_path, index=False)
|
| 184 |
+
|
| 185 |
+
# 2. RTL design features
|
| 186 |
+
rtl_df = self._create_rtl_features(n_samples=5000)
|
| 187 |
+
rtl_path = self.data_dir / "synthetic_rtl_features.csv"
|
| 188 |
+
rtl_df.to_csv(rtl_path, index=False)
|
| 189 |
+
|
| 190 |
+
# 3. Bug reports
|
| 191 |
+
bugs_df = self._create_bug_reports(n_samples=3000)
|
| 192 |
+
bugs_path = self.data_dir / "synthetic_bug_reports.csv"
|
| 193 |
+
bugs_df.to_csv(bugs_path, index=False)
|
| 194 |
+
|
| 195 |
+
# 4. LLM training examples
|
| 196 |
+
llm_examples = self._create_llm_training_examples()
|
| 197 |
+
llm_path = self.data_dir / "llm_training_examples.json"
|
| 198 |
+
with open(llm_path, 'w') as f:
|
| 199 |
+
json.dump(llm_examples, f, indent=2)
|
| 200 |
+
|
| 201 |
+
self.collected_datasets['synthetic_data'] = {
|
| 202 |
+
'verification_logs': {
|
| 203 |
+
'path': str(logs_path),
|
| 204 |
+
'samples': len(logs_df),
|
| 205 |
+
'description': 'Synthetic verification simulation logs'
|
| 206 |
+
},
|
| 207 |
+
'rtl_features': {
|
| 208 |
+
'path': str(rtl_path),
|
| 209 |
+
'samples': len(rtl_df),
|
| 210 |
+
'description': 'Synthetic RTL design characteristics'
|
| 211 |
+
},
|
| 212 |
+
'bug_reports': {
|
| 213 |
+
'path': str(bugs_path),
|
| 214 |
+
'samples': len(bugs_df),
|
| 215 |
+
'description': 'Synthetic bug report data'
|
| 216 |
+
},
|
| 217 |
+
'llm_examples': {
|
| 218 |
+
'path': str(llm_path),
|
| 219 |
+
'samples': len(llm_examples),
|
| 220 |
+
'description': 'Training examples for LLM fine-tuning'
|
| 221 |
+
}
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
print("✅ Synthetic datasets created")
|
| 225 |
+
|
| 226 |
+
def _create_verification_logs(self, n_samples: int) -> pd.DataFrame:
|
| 227 |
+
"""Create realistic verification log dataset"""
|
| 228 |
+
np.random.seed(42)
|
| 229 |
+
|
| 230 |
+
modules = ['ALU', 'UART', 'SPI', 'I2C', 'WDT', 'CPU_CORE', 'MEMORY_CTRL', 'DMA', 'GPIO', 'TIMER', 'PLL', 'ADC']
|
| 231 |
+
test_types = ['functional', 'timing', 'power', 'coverage', 'stress', 'protocol', 'random', 'directed']
|
| 232 |
+
result_types = ['PASS', 'FAIL_TIMING', 'FAIL_PROTOCOL', 'FAIL_ASSERTION', 'FAIL_COVERAGE', 'ERROR', 'TIMEOUT']
|
| 233 |
+
simulators = ['ModelSim', 'VCS', 'Xcelium', 'Verilator', 'Icarus']
|
| 234 |
+
|
| 235 |
+
data = []
|
| 236 |
+
for i in range(n_samples):
|
| 237 |
+
module = np.random.choice(modules)
|
| 238 |
+
test_type = np.random.choice(test_types)
|
| 239 |
+
result = np.random.choice(result_types, p=[0.70, 0.08, 0.06, 0.06, 0.05, 0.03, 0.02])
|
| 240 |
+
|
| 241 |
+
# Module complexity affects metrics
|
| 242 |
+
complexity_map = {
|
| 243 |
+
'ALU': 1, 'UART': 2, 'SPI': 2, 'I2C': 3, 'WDT': 1,
|
| 244 |
+
'CPU_CORE': 10, 'MEMORY_CTRL': 6, 'DMA': 5, 'GPIO': 1,
|
| 245 |
+
'TIMER': 2, 'PLL': 4, 'ADC': 3
|
| 246 |
+
}
|
| 247 |
+
complexity = complexity_map.get(module, 2)
|
| 248 |
+
|
| 249 |
+
entry = {
|
| 250 |
+
'log_id': f"sim_{i:06d}",
|
| 251 |
+
'timestamp': pd.Timestamp('2024-01-01') + pd.Timedelta(hours=i//50),
|
| 252 |
+
'module': module,
|
| 253 |
+
'test_type': test_type,
|
| 254 |
+
'result': result,
|
| 255 |
+
'simulator': np.random.choice(simulators),
|
| 256 |
+
'duration_seconds': max(1, np.random.exponential(60 * complexity)),
|
| 257 |
+
'lines_of_log': max(10, np.random.poisson(300 * complexity)),
|
| 258 |
+
'error_count': np.random.poisson(2) if result != 'PASS' else 0,
|
| 259 |
+
'warning_count': max(0, np.random.poisson(4)),
|
| 260 |
+
'coverage_line': max(0, min(100, np.random.normal(85 if result == 'PASS' else 65, 15))),
|
| 261 |
+
'coverage_branch': max(0, min(100, np.random.normal(80 if result == 'PASS' else 60, 18))),
|
| 262 |
+
'coverage_toggle': max(0, min(100, np.random.normal(75 if result == 'PASS' else 55, 20))),
|
| 263 |
+
'memory_usage_mb': max(1, np.random.exponential(50 * complexity)),
|
| 264 |
+
'cpu_usage_percent': max(1, min(100, np.random.normal(40, 25))),
|
| 265 |
+
'seed_value': np.random.randint(1, 1000000),
|
| 266 |
+
'complexity_score': complexity + np.random.normal(0, 0.5),
|
| 267 |
+
'test_case_count': max(1, np.random.poisson(20 * complexity)),
|
| 268 |
+
'assertion_count': max(0, np.random.poisson(10 * complexity)),
|
| 269 |
+
'clock_cycles': max(100, np.random.exponential(10000 * complexity))
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
# Derived features
|
| 273 |
+
entry['is_failure'] = result != 'PASS'
|
| 274 |
+
entry['severity'] = 'HIGH' if 'ERROR' in result or 'TIMEOUT' in result else 'MEDIUM' if 'FAIL' in result else 'LOW'
|
| 275 |
+
entry['efficiency_score'] = entry['coverage_line'] / max(1, entry['duration_seconds'] / 60)
|
| 276 |
+
|
| 277 |
+
data.append(entry)
|
| 278 |
+
|
| 279 |
+
return pd.DataFrame(data)
|
| 280 |
+
|
| 281 |
+
def _create_rtl_features(self, n_samples: int) -> pd.DataFrame:
|
| 282 |
+
"""Create RTL design features dataset"""
|
| 283 |
+
np.random.seed(42)
|
| 284 |
+
|
| 285 |
+
design_types = ['ALU', 'CPU', 'GPU', 'DSP', 'MEMORY', 'IO', 'NETWORK', 'CRYPTO', 'FPGA', 'ASIC', 'SOC']
|
| 286 |
+
|
| 287 |
+
data = []
|
| 288 |
+
for i in range(n_samples):
|
| 289 |
+
design_type = np.random.choice(design_types)
|
| 290 |
+
|
| 291 |
+
# Base complexity varies by type
|
| 292 |
+
complexity_map = {
|
| 293 |
+
'ALU': 2, 'CPU': 8, 'GPU': 10, 'DSP': 6, 'MEMORY': 4,
|
| 294 |
+
'IO': 3, 'NETWORK': 7, 'CRYPTO': 5, 'FPGA': 6, 'ASIC': 9, 'SOC': 12
|
| 295 |
+
}
|
| 296 |
+
base_complexity = complexity_map[design_type]
|
| 297 |
+
|
| 298 |
+
features = {
|
| 299 |
+
'design_id': f"design_{i:05d}",
|
| 300 |
+
'design_type': design_type,
|
| 301 |
+
'lines_of_code': int(np.random.lognormal(np.log(1000 * base_complexity), 0.8)),
|
| 302 |
+
'module_count': max(1, np.random.poisson(5 * base_complexity)),
|
| 303 |
+
'signal_count': max(10, np.random.poisson(50 * base_complexity)),
|
| 304 |
+
'always_blocks': max(1, np.random.poisson(10 * base_complexity)),
|
| 305 |
+
'assign_statements': max(1, np.random.poisson(20 * base_complexity)),
|
| 306 |
+
'if_statements': max(1, np.random.poisson(15 * base_complexity)),
|
| 307 |
+
'case_statements': max(0, np.random.poisson(5 * base_complexity)),
|
| 308 |
+
'for_loops': max(0, np.random.poisson(3 * base_complexity)),
|
| 309 |
+
'function_count': max(0, np.random.poisson(2 * base_complexity)),
|
| 310 |
+
'task_count': max(0, np.random.poisson(3 * base_complexity)),
|
| 311 |
+
'clock_domains': max(1, np.random.poisson(2) + 1),
|
| 312 |
+
'reset_signals': max(1, np.random.poisson(1) + 1),
|
| 313 |
+
'interface_signals': max(5, np.random.poisson(20 * base_complexity)),
|
| 314 |
+
'memory_instances': np.random.poisson(2) if design_type in ['CPU', 'GPU', 'MEMORY', 'SOC'] else max(0, np.random.poisson(0.5)),
|
| 315 |
+
'fsm_count': np.random.poisson(3) if design_type in ['CPU', 'IO', 'NETWORK'] else max(0, np.random.poisson(1)),
|
| 316 |
+
'pipeline_stages': np.random.poisson(4) if design_type in ['CPU', 'DSP'] else max(0, np.random.poisson(1)),
|
| 317 |
+
'arithmetic_units': np.random.poisson(5) if design_type in ['ALU', 'DSP', 'CRYPTO'] else max(0, np.random.poisson(1)),
|
| 318 |
+
'complexity_score': max(1.0, base_complexity + np.random.normal(0, 1.5)),
|
| 319 |
+
'target_frequency_mhz': max(10, np.random.normal(200, 100)),
|
| 320 |
+
'power_budget_mw': max(1, np.random.exponential(100 * base_complexity)),
|
| 321 |
+
'area_budget_um2': max(1000, np.random.exponential(10000 * base_complexity)),
|
| 322 |
+
'technology_node_nm': np.random.choice([180, 130, 90, 65, 45, 32, 28, 22, 16, 14, 10, 7, 5]),
|
| 323 |
+
'verification_time_hours': max(1, np.random.exponential(40 * base_complexity))
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
# Boolean features
|
| 327 |
+
features['has_memory'] = features['memory_instances'] > 0
|
| 328 |
+
features['has_fsm'] = features['fsm_count'] > 0
|
| 329 |
+
features['has_pipeline'] = features['pipeline_stages'] > 2
|
| 330 |
+
features['has_floating_point'] = design_type in ['DSP', 'GPU'] or np.random.random() < 0.1
|
| 331 |
+
features['is_complex'] = features['complexity_score'] > 6
|
| 332 |
+
features['is_large'] = features['lines_of_code'] > 10000
|
| 333 |
+
features['is_high_freq'] = features['target_frequency_mhz'] > 500
|
| 334 |
+
features['is_low_power'] = features['power_budget_mw'] < 50
|
| 335 |
+
|
| 336 |
+
# Bug probability based on realistic factors
|
| 337 |
+
complexity_factor = min(0.4, features['complexity_score'] / 20)
|
| 338 |
+
size_factor = min(0.3, features['lines_of_code'] / 50000)
|
| 339 |
+
frequency_factor = 0.1 if features['target_frequency_mhz'] > 1000 else 0
|
| 340 |
+
tech_factor = 0.1 if features['technology_node_nm'] <= 16 else 0
|
| 341 |
+
|
| 342 |
+
bug_probability = complexity_factor + size_factor + frequency_factor + tech_factor + np.random.normal(0, 0.1)
|
| 343 |
+
bug_probability = max(0.05, min(0.90, bug_probability))
|
| 344 |
+
|
| 345 |
+
features['bug_probability'] = bug_probability
|
| 346 |
+
features['has_bugs'] = np.random.random() < bug_probability
|
| 347 |
+
features['estimated_bug_count'] = np.random.poisson(5) if features['has_bugs'] else 0
|
| 348 |
+
|
| 349 |
+
data.append(features)
|
| 350 |
+
|
| 351 |
+
return pd.DataFrame(data)
|
| 352 |
+
|
| 353 |
+
def _create_bug_reports(self, n_samples: int) -> pd.DataFrame:
|
| 354 |
+
"""Create bug reports dataset"""
|
| 355 |
+
np.random.seed(42)
|
| 356 |
+
|
| 357 |
+
bug_types = ['functional', 'timing', 'power', 'synthesis', 'verification', 'interface', 'protocol']
|
| 358 |
+
severities = ['critical', 'major', 'minor', 'trivial']
|
| 359 |
+
statuses = ['open', 'in_progress', 'fixed', 'closed', 'wont_fix']
|
| 360 |
+
|
| 361 |
+
data = []
|
| 362 |
+
for i in range(n_samples):
|
| 363 |
+
bug_type = np.random.choice(bug_types)
|
| 364 |
+
severity = np.random.choice(severities, p=[0.10, 0.30, 0.45, 0.15])
|
| 365 |
+
status = np.random.choice(statuses, p=[0.15, 0.25, 0.35, 0.20, 0.05])
|
| 366 |
+
|
| 367 |
+
report = {
|
| 368 |
+
'bug_id': f"BUG_{i:06d}",
|
| 369 |
+
'report_date': pd.Timestamp('2023-01-01') + pd.Timedelta(days=np.random.randint(0, 400)),
|
| 370 |
+
'bug_type': bug_type,
|
| 371 |
+
'severity': severity,
|
| 372 |
+
'status': status,
|
| 373 |
+
'affected_module': np.random.choice(['ALU', 'UART', 'SPI', 'CPU_CORE', 'MEMORY', 'IO', 'NETWORK']),
|
| 374 |
+
'reporter_experience': np.random.choice(['junior', 'mid', 'senior', 'expert'], p=[0.25, 0.35, 0.30, 0.10]),
|
| 375 |
+
'lines_affected': max(1, np.random.poisson(15)),
|
| 376 |
+
'files_affected': max(1, np.random.poisson(3)),
|
| 377 |
+
'discovery_method': np.random.choice(['simulation', 'synthesis', 'formal', 'review', 'customer']),
|
| 378 |
+
'fix_complexity': np.random.randint(1, 6),
|
| 379 |
+
'regression_risk': np.random.choice(['low', 'medium', 'high'], p=[0.60, 0.30, 0.10]),
|
| 380 |
+
'test_coverage_before': max(0, min(100, np.random.normal(70, 20))),
|
| 381 |
+
'test_coverage_after': max(0, min(100, np.random.normal(85, 15))),
|
| 382 |
+
'verification_effort_hours': max(0.5, np.random.exponential(8)),
|
| 383 |
+
'fix_effort_hours': max(0.5, np.random.exponential(12)),
|
| 384 |
+
'related_bugs': max(0, np.random.poisson(1)),
|
| 385 |
+
'priority': np.random.choice(['low', 'medium', 'high', 'urgent'], p=[0.30, 0.40, 0.25, 0.05])
|
| 386 |
+
}
|
| 387 |
+
|
| 388 |
+
# Add resolution date if fixed/closed
|
| 389 |
+
if status in ['fixed', 'closed']:
|
| 390 |
+
days_to_fix = max(1, np.random.exponential(30))
|
| 391 |
+
report['resolution_date'] = report['report_date'] + pd.Timedelta(days=days_to_fix)
|
| 392 |
+
else:
|
| 393 |
+
report['resolution_date'] = None
|
| 394 |
+
|
| 395 |
+
data.append(report)
|
| 396 |
+
|
| 397 |
+
return pd.DataFrame(data)
|
| 398 |
+
|
| 399 |
+
def _create_llm_training_examples(self) -> List[Dict[str, str]]:
|
| 400 |
+
"""Create training examples for LLM fine-tuning"""
|
| 401 |
+
examples = []
|
| 402 |
+
|
| 403 |
+
# Basic testbench examples
|
| 404 |
+
modules = ['FIFO', 'Counter', 'Multiplexer', 'Decoder', 'Encoder', 'Shifter']
|
| 405 |
+
for module in modules:
|
| 406 |
+
examples.append({
|
| 407 |
+
'instruction': f'Generate basic testbench for {module} module',
|
| 408 |
+
'response': f'''module {module.lower()}_testbench;
|
| 409 |
+
logic clk = 0;
|
| 410 |
+
logic reset_n = 1;
|
| 411 |
+
|
| 412 |
+
// {module} signals
|
| 413 |
+
logic enable;
|
| 414 |
+
logic [7:0] data_in, data_out;
|
| 415 |
+
|
| 416 |
+
always #5 clk = ~clk;
|
| 417 |
+
|
| 418 |
+
initial begin
|
| 419 |
+
reset_n = 0; #20 reset_n = 1;
|
| 420 |
+
@(posedge clk);
|
| 421 |
+
|
| 422 |
+
// Test {module} functionality
|
| 423 |
+
enable = 1;
|
| 424 |
+
data_in = 8'hAA;
|
| 425 |
+
|
| 426 |
+
repeat(10) @(posedge clk);
|
| 427 |
+
|
| 428 |
+
$display("Test completed");
|
| 429 |
+
$finish;
|
| 430 |
+
end
|
| 431 |
+
endmodule'''
|
| 432 |
+
})
|
| 433 |
+
|
| 434 |
+
# Protocol-specific examples
|
| 435 |
+
protocols = ['UART', 'SPI', 'I2C']
|
| 436 |
+
for protocol in protocols:
|
| 437 |
+
examples.append({
|
| 438 |
+
'instruction': f'Generate {protocol} protocol assertions',
|
| 439 |
+
'response': f'''module {protocol.lower()}_assertions(
|
| 440 |
+
input clk, reset_n,
|
| 441 |
+
input start, done, valid
|
| 442 |
+
);
|
| 443 |
+
|
| 444 |
+
property {protocol.lower()}_handshake;
|
| 445 |
+
@(posedge clk) disable iff (!reset_n)
|
| 446 |
+
start |-> ##[1:100] done;
|
| 447 |
+
endproperty
|
| 448 |
+
|
| 449 |
+
assert property({protocol.lower()}_handshake)
|
| 450 |
+
else $error("{protocol} handshake failed");
|
| 451 |
+
|
| 452 |
+
endmodule'''
|
| 453 |
+
})
|
| 454 |
+
|
| 455 |
+
return examples
|
| 456 |
+
|
| 457 |
+
def create_synthetic_dataset(self, n_samples: int = 1000) -> pd.DataFrame:
|
| 458 |
+
"""Create a quick synthetic dataset for demo purposes"""
|
| 459 |
+
return self._create_rtl_features(n_samples)
|
| 460 |
+
|
| 461 |
+
def get_dataset_summary(self) -> Dict[str, Any]:
|
| 462 |
+
"""Get summary of all collected datasets"""
|
| 463 |
+
summary = {
|
| 464 |
+
'timestamp': pd.Timestamp.now().isoformat(),
|
| 465 |
+
'total_datasets': len(self.collected_datasets),
|
| 466 |
+
'datasets': self.collected_datasets
|
| 467 |
+
}
|
| 468 |
+
|
| 469 |
+
# Save summary
|
| 470 |
+
summary_path = self.data_dir / "dataset_summary.json"
|
| 471 |
+
with open(summary_path, 'w') as f:
|
| 472 |
+
json.dump(summary, f, indent=2, default=str)
|
| 473 |
+
|
| 474 |
+
return summary
|