checkpoint selection added
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import supervision as sv
|
4 |
-
from rfdetr import RFDETRBase
|
5 |
from rfdetr.util.coco_classes import COCO_CLASSES
|
6 |
|
7 |
MARKDOWN = """
|
@@ -23,17 +23,26 @@ RF-DETR is a real-time, transformer-based object detection model architecture de
|
|
23 |
by [Roboflow](https://roboflow.com/) and released under the Apache 2.0 license.
|
24 |
"""
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
COLOR = sv.ColorPalette.from_hex([
|
27 |
"#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
|
28 |
"#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
|
29 |
])
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
|
34 |
@spaces.GPU()
|
35 |
-
def inference(image, confidence):
|
36 |
-
detections =
|
|
|
|
|
37 |
|
38 |
text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size)
|
39 |
thickness = sv.calculate_optimal_line_thickness(resolution_wh=image.size)
|
@@ -74,7 +83,13 @@ with gr.Blocks() as demo:
|
|
74 |
step=0.05,
|
75 |
value=0.5,
|
76 |
)
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Column():
|
79 |
output_image = gr.Image(
|
80 |
label="Input Image",
|
@@ -82,11 +97,17 @@ with gr.Blocks() as demo:
|
|
82 |
type='pil',
|
83 |
height=600
|
84 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
demo.launch(debug=False, show_error=True)
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import supervision as sv
|
4 |
+
from rfdetr import RFDETRBase, RFDETRLarge
|
5 |
from rfdetr.util.coco_classes import COCO_CLASSES
|
6 |
|
7 |
MARKDOWN = """
|
|
|
23 |
by [Roboflow](https://roboflow.com/) and released under the Apache 2.0 license.
|
24 |
"""
|
25 |
|
26 |
+
IMAGE_EXAMPLES = [
|
27 |
+
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, "large"],
|
28 |
+
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, "large"],
|
29 |
+
['https://media.roboflow.com/notebooks/examples/dog-2.jpeg', 0.5, "base"],
|
30 |
+
]
|
31 |
+
|
32 |
COLOR = sv.ColorPalette.from_hex([
|
33 |
"#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
|
34 |
"#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
|
35 |
])
|
36 |
|
37 |
+
MODEL_BASE = RFDETRBase(resolution=728)
|
38 |
+
MODEL_LARGE = RFDETRLarge(resolution=728)
|
39 |
|
40 |
|
41 |
@spaces.GPU()
|
42 |
+
def inference(image, confidence: float, checkpoint: str):
|
43 |
+
detections = MODEL_BASE.predict(image, threshold=confidence) \
|
44 |
+
if checkpoint == "base" \
|
45 |
+
else MODEL_LARGE.predict(image, threshold=confidence)
|
46 |
|
47 |
text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size)
|
48 |
thickness = sv.calculate_optimal_line_thickness(resolution_wh=image.size)
|
|
|
83 |
step=0.05,
|
84 |
value=0.5,
|
85 |
)
|
86 |
+
with gr.Row():
|
87 |
+
checkpoint_dropdown = gr.Dropdown(
|
88 |
+
label="Checkpoint",
|
89 |
+
choices=["base", "large"],
|
90 |
+
value="base"
|
91 |
+
)
|
92 |
+
submit_button = gr.Button("Submit")
|
93 |
with gr.Column():
|
94 |
output_image = gr.Image(
|
95 |
label="Input Image",
|
|
|
97 |
type='pil',
|
98 |
height=600
|
99 |
)
|
100 |
+
gr.Examples(
|
101 |
+
fn=inference,
|
102 |
+
examples=IMAGE_EXAMPLES,
|
103 |
+
inputs=[input_image, confidence_slider, checkpoint_dropdown],
|
104 |
+
outputs=output_image
|
105 |
+
)
|
106 |
|
107 |
+
submit_button.click(
|
108 |
+
inference,
|
109 |
+
inputs=[input_image, confidence_slider, checkpoint_dropdown],
|
110 |
+
outputs=output_image
|
111 |
+
)
|
112 |
|
113 |
demo.launch(debug=False, show_error=True)
|