Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- README.md +43 -0
- app.py +96 -0
- requirements.txt +7 -0
README.md
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: EchoScribe
|
| 3 |
+
emoji: 🎥
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: "3.50.2"
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# 🎥 EchoScribe: Smart Video Transcriber
|
| 13 |
+
|
| 14 |
+
**EchoScribe** is a powerful AI tool that turns your videos into clean, punctuated transcripts, live subtitles, and insightful summaries — all in one click.
|
| 15 |
+
|
| 16 |
+
## 🚀 Features
|
| 17 |
+
|
| 18 |
+
- 🎬 Upload any video (MP4)
|
| 19 |
+
- 🧾 Get raw and punctuated transcripts using `openai/whisper-large` and `oliverguhr/fullstop-punctuation-multilang-large`
|
| 20 |
+
- 📝 Generate clean summaries using `facebook/bart-large-cnn`
|
| 21 |
+
- ⬇️ Download transcript, summary, and subtitle (.srt) files
|
| 22 |
+
- 🌈 Clean, responsive interface powered by Gradio
|
| 23 |
+
- 🖤 Built with ❤️ by Snigdha’s AI Lab
|
| 24 |
+
|
| 25 |
+
## 🔧 Technologies Used
|
| 26 |
+
|
| 27 |
+
- Hugging Face Transformers
|
| 28 |
+
- Gradio
|
| 29 |
+
- Whisper ASR
|
| 30 |
+
- MoviePy for audio extraction
|
| 31 |
+
- Python, Torch
|
| 32 |
+
|
| 33 |
+
## 🛠️ Usage
|
| 34 |
+
|
| 35 |
+
1. Upload a short video clip
|
| 36 |
+
2. Wait for the transcript and summary to be generated
|
| 37 |
+
3. View and download the results instantly
|
| 38 |
+
|
| 39 |
+
> Ideal for note-taking, content summarization, interviews, YouTube creators, and accessibility projects.
|
| 40 |
+
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
Feel free to fork, contribute, and remix!
|
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import tempfile
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
+
from moviepy.editor import VideoFileClip
|
| 7 |
+
import srt
|
| 8 |
+
import datetime
|
| 9 |
+
|
| 10 |
+
# Load Hugging Face models
|
| 11 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 12 |
+
whisper = pipeline("automatic-speech-recognition", model="openai/whisper-large", device=device)
|
| 13 |
+
punctuate = pipeline("text2text-generation", model="oliverguhr/fullstop-punctuation-multilang-large")
|
| 14 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 15 |
+
|
| 16 |
+
# Utility: Extract audio
|
| 17 |
+
def extract_audio(video_path):
|
| 18 |
+
video = VideoFileClip(video_path)
|
| 19 |
+
audio_path = tempfile.mktemp(suffix=".wav")
|
| 20 |
+
video.audio.write_audiofile(audio_path, verbose=False, logger=None)
|
| 21 |
+
return audio_path
|
| 22 |
+
|
| 23 |
+
# Utility: Create .srt subtitles
|
| 24 |
+
def generate_srt(transcript_text):
|
| 25 |
+
lines = transcript_text.strip().split(". ")
|
| 26 |
+
subs = []
|
| 27 |
+
for i, line in enumerate(lines):
|
| 28 |
+
start = datetime.timedelta(seconds=i*2)
|
| 29 |
+
end = datetime.timedelta(seconds=(i+1)*2)
|
| 30 |
+
subs.append(srt.Subtitle(index=i+1, start=start, end=end, content=line.strip()))
|
| 31 |
+
srt_data = srt.compose(subs)
|
| 32 |
+
srt_path = tempfile.mktemp(suffix=".srt")
|
| 33 |
+
with open(srt_path, "w") as f:
|
| 34 |
+
f.write(srt_data)
|
| 35 |
+
return srt_path
|
| 36 |
+
|
| 37 |
+
# Full pipeline
|
| 38 |
+
def transcribe_pipeline(video_file):
|
| 39 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
|
| 40 |
+
tmp.write(video_file.read())
|
| 41 |
+
video_path = tmp.name
|
| 42 |
+
|
| 43 |
+
audio_path = extract_audio(video_path)
|
| 44 |
+
result = whisper(audio_path)
|
| 45 |
+
raw_text = result["text"]
|
| 46 |
+
|
| 47 |
+
punctuated = punctuate(raw_text)[0]["generated_text"]
|
| 48 |
+
summary = summarizer(punctuated, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
|
| 49 |
+
srt_path = generate_srt(punctuated)
|
| 50 |
+
|
| 51 |
+
# Save raw text, punctuated text, and summary
|
| 52 |
+
raw_txt_path = tempfile.mktemp(suffix=".txt")
|
| 53 |
+
punct_txt_path = tempfile.mktemp(suffix=".txt")
|
| 54 |
+
summary_txt_path = tempfile.mktemp(suffix=".txt")
|
| 55 |
+
|
| 56 |
+
with open(raw_txt_path, "w") as f:
|
| 57 |
+
f.write(raw_text)
|
| 58 |
+
with open(punct_txt_path, "w") as f:
|
| 59 |
+
f.write(punctuated)
|
| 60 |
+
with open(summary_txt_path, "w") as f:
|
| 61 |
+
f.write(summary)
|
| 62 |
+
|
| 63 |
+
return raw_text, punctuated, summary, punct_txt_path, summary_txt_path, srt_path
|
| 64 |
+
|
| 65 |
+
# Gradio UI
|
| 66 |
+
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
| 67 |
+
gr.Markdown("# 🎥 EchoScribe: Smart Video Transcriber")
|
| 68 |
+
gr.Markdown("Upload a video to extract transcript with punctuation and summary using Hugging Face models. Powered by Whisper, BART, and punctuation restoration.")
|
| 69 |
+
|
| 70 |
+
with gr.Row():
|
| 71 |
+
video_input = gr.Video(label="🎬 Upload your video")
|
| 72 |
+
|
| 73 |
+
with gr.Row():
|
| 74 |
+
raw_output = gr.Textbox(label="🧾 Raw Transcript (Whisper)", lines=6)
|
| 75 |
+
punct_output = gr.Textbox(label="📄 Punctuated Transcript", lines=6)
|
| 76 |
+
|
| 77 |
+
summary_output = gr.Textbox(label="📝 Summary", lines=4)
|
| 78 |
+
|
| 79 |
+
with gr.Row():
|
| 80 |
+
download_transcript = gr.File(label="⬇️ Download Transcript (.txt)")
|
| 81 |
+
download_summary = gr.File(label="⬇️ Download Summary (.txt)")
|
| 82 |
+
download_srt = gr.File(label="⬇️ Download Subtitles (.srt)")
|
| 83 |
+
|
| 84 |
+
submit_btn = gr.Button("🚀 Transcribe & Summarize")
|
| 85 |
+
|
| 86 |
+
def run_all(video):
|
| 87 |
+
return transcribe_pipeline(video)
|
| 88 |
+
|
| 89 |
+
submit_btn.click(fn=run_all, inputs=video_input,
|
| 90 |
+
outputs=[raw_output, punct_output, summary_output,
|
| 91 |
+
download_transcript, download_summary, download_srt])
|
| 92 |
+
|
| 93 |
+
gr.Markdown("---")
|
| 94 |
+
gr.Markdown("🔧 Built with ❤️ by **Snigdha’s AI Lab**")
|
| 95 |
+
|
| 96 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
moviepy
|
| 5 |
+
pydub
|
| 6 |
+
ffmpeg-python
|
| 7 |
+
srt
|