Spaces:
Runtime error
Runtime error
Commit
·
7a8e3f2
1
Parent(s):
5e55cac
Small perf and overall changes
Browse files
app.py
CHANGED
|
@@ -22,7 +22,9 @@ from tqdm import tqdm
|
|
| 22 |
from safetensors.torch import load_file
|
| 23 |
from huggingface_hub import hf_hub_download
|
| 24 |
|
| 25 |
-
DESCRIPTION =
|
|
|
|
|
|
|
| 26 |
if not torch.cuda.is_available():
|
| 27 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 28 |
|
|
@@ -78,7 +80,6 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 78 |
seed = random.randint(0, MAX_SEED)
|
| 79 |
return seed
|
| 80 |
|
| 81 |
-
|
| 82 |
def generate(
|
| 83 |
prompt: str,
|
| 84 |
seed: int = 0,
|
|
@@ -87,11 +88,11 @@ def generate(
|
|
| 87 |
guidance_scale: float = 8.0,
|
| 88 |
num_inference_steps: int = 4,
|
| 89 |
num_images: int = 4,
|
|
|
|
|
|
|
| 90 |
) -> PIL.Image.Image:
|
|
|
|
| 91 |
torch.manual_seed(seed)
|
| 92 |
-
|
| 93 |
-
# if width > 512 or height > 512:
|
| 94 |
-
# num_images = 2
|
| 95 |
start_time = time.time()
|
| 96 |
result = pipe(
|
| 97 |
prompt=prompt,
|
|
@@ -103,8 +104,9 @@ def generate(
|
|
| 103 |
lcm_origin_steps=50,
|
| 104 |
output_type="pil",
|
| 105 |
).images
|
|
|
|
| 106 |
print(time.time() - start_time)
|
| 107 |
-
return result
|
| 108 |
|
| 109 |
examples = [
|
| 110 |
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
|
|
@@ -140,8 +142,9 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 140 |
maximum=MAX_SEED,
|
| 141 |
step=1,
|
| 142 |
value=0,
|
|
|
|
| 143 |
)
|
| 144 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 145 |
with gr.Row():
|
| 146 |
width = gr.Slider(
|
| 147 |
label="Width",
|
|
@@ -194,12 +197,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 194 |
prompt.submit,
|
| 195 |
run_button.click,
|
| 196 |
],
|
| 197 |
-
fn=randomize_seed_fn,
|
| 198 |
-
inputs=[seed, randomize_seed],
|
| 199 |
-
outputs=seed,
|
| 200 |
-
queue=False,
|
| 201 |
-
api_name=False,
|
| 202 |
-
).then(
|
| 203 |
fn=generate,
|
| 204 |
inputs=[
|
| 205 |
prompt,
|
|
@@ -209,10 +206,11 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 209 |
guidance_scale,
|
| 210 |
num_inference_steps,
|
| 211 |
],
|
| 212 |
-
outputs=result,
|
| 213 |
api_name="run",
|
| 214 |
)
|
| 215 |
|
| 216 |
if __name__ == "__main__":
|
|
|
|
| 217 |
# demo.queue(max_size=20).launch()
|
| 218 |
demo.launch()
|
|
|
|
| 22 |
from safetensors.torch import load_file
|
| 23 |
from huggingface_hub import hf_hub_download
|
| 24 |
|
| 25 |
+
DESCRIPTION = '''# Latent Consistency Model
|
| 26 |
+
#### Distilled from Dreamshaper v7 fine-tune of [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). [Project page](https://latent-consistency-models.github.io)
|
| 27 |
+
'''
|
| 28 |
if not torch.cuda.is_available():
|
| 29 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 30 |
|
|
|
|
| 80 |
seed = random.randint(0, MAX_SEED)
|
| 81 |
return seed
|
| 82 |
|
|
|
|
| 83 |
def generate(
|
| 84 |
prompt: str,
|
| 85 |
seed: int = 0,
|
|
|
|
| 88 |
guidance_scale: float = 8.0,
|
| 89 |
num_inference_steps: int = 4,
|
| 90 |
num_images: int = 4,
|
| 91 |
+
randomize_seed: bool = False,
|
| 92 |
+
progress = gr.Progress(track_tqdm=True)
|
| 93 |
) -> PIL.Image.Image:
|
| 94 |
+
seed = randomize_seed_fn(seed, randomize_seed)
|
| 95 |
torch.manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
| 96 |
start_time = time.time()
|
| 97 |
result = pipe(
|
| 98 |
prompt=prompt,
|
|
|
|
| 104 |
lcm_origin_steps=50,
|
| 105 |
output_type="pil",
|
| 106 |
).images
|
| 107 |
+
|
| 108 |
print(time.time() - start_time)
|
| 109 |
+
return result, seed
|
| 110 |
|
| 111 |
examples = [
|
| 112 |
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
|
|
|
|
| 142 |
maximum=MAX_SEED,
|
| 143 |
step=1,
|
| 144 |
value=0,
|
| 145 |
+
randomize=True
|
| 146 |
)
|
| 147 |
+
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
|
| 148 |
with gr.Row():
|
| 149 |
width = gr.Slider(
|
| 150 |
label="Width",
|
|
|
|
| 197 |
prompt.submit,
|
| 198 |
run_button.click,
|
| 199 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
fn=generate,
|
| 201 |
inputs=[
|
| 202 |
prompt,
|
|
|
|
| 206 |
guidance_scale,
|
| 207 |
num_inference_steps,
|
| 208 |
],
|
| 209 |
+
outputs=[result, seed],
|
| 210 |
api_name="run",
|
| 211 |
)
|
| 212 |
|
| 213 |
if __name__ == "__main__":
|
| 214 |
+
demo.queue(api_open=False)
|
| 215 |
# demo.queue(max_size=20).launch()
|
| 216 |
demo.launch()
|