Spaces:
Runtime error
Runtime error
[WIP]
Browse files
app.py
CHANGED
|
@@ -17,7 +17,7 @@ import os
|
|
| 17 |
import torch
|
| 18 |
from tqdm import tqdm
|
| 19 |
from safetensors.torch import load_file
|
| 20 |
-
|
| 21 |
|
| 22 |
from concurrent.futures import ThreadPoolExecutor
|
| 23 |
import uuid
|
|
@@ -44,15 +44,16 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 44 |
seed = random.randint(0, MAX_SEED)
|
| 45 |
return seed
|
| 46 |
|
| 47 |
-
def save_image(img):
|
| 48 |
unique_name = str(uuid.uuid4()) + '.png'
|
| 49 |
img.save(unique_name)
|
|
|
|
| 50 |
return unique_name
|
| 51 |
|
| 52 |
-
def save_images(image_array):
|
| 53 |
paths = []
|
| 54 |
with ThreadPoolExecutor() as executor:
|
| 55 |
-
paths = list(executor.map(save_image, image_array))
|
| 56 |
return paths
|
| 57 |
|
| 58 |
def generate(
|
|
@@ -64,7 +65,8 @@ def generate(
|
|
| 64 |
num_inference_steps: int = 4,
|
| 65 |
num_images: int = 4,
|
| 66 |
randomize_seed: bool = False,
|
| 67 |
-
progress = gr.Progress(track_tqdm=True)
|
|
|
|
| 68 |
) -> PIL.Image.Image:
|
| 69 |
seed = randomize_seed_fn(seed, randomize_seed)
|
| 70 |
torch.manual_seed(seed)
|
|
@@ -79,7 +81,7 @@ def generate(
|
|
| 79 |
lcm_origin_steps=50,
|
| 80 |
output_type="pil",
|
| 81 |
).images
|
| 82 |
-
paths = save_images(result)
|
| 83 |
print(time.time() - start_time)
|
| 84 |
return paths, seed
|
| 85 |
|
|
@@ -160,6 +162,9 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 160 |
visible=False,
|
| 161 |
)
|
| 162 |
|
|
|
|
|
|
|
|
|
|
| 163 |
gr.Examples(
|
| 164 |
examples=examples,
|
| 165 |
inputs=prompt,
|
|
|
|
| 17 |
import torch
|
| 18 |
from tqdm import tqdm
|
| 19 |
from safetensors.torch import load_file
|
| 20 |
+
import gradio_user_history as gr_user_history
|
| 21 |
|
| 22 |
from concurrent.futures import ThreadPoolExecutor
|
| 23 |
import uuid
|
|
|
|
| 44 |
seed = random.randint(0, MAX_SEED)
|
| 45 |
return seed
|
| 46 |
|
| 47 |
+
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
|
| 48 |
unique_name = str(uuid.uuid4()) + '.png'
|
| 49 |
img.save(unique_name)
|
| 50 |
+
gr_user_history.save_image(label=metadata["prompt"], image=image, profile=profile, metadata=metadata)
|
| 51 |
return unique_name
|
| 52 |
|
| 53 |
+
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
|
| 54 |
paths = []
|
| 55 |
with ThreadPoolExecutor() as executor:
|
| 56 |
+
paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
|
| 57 |
return paths
|
| 58 |
|
| 59 |
def generate(
|
|
|
|
| 65 |
num_inference_steps: int = 4,
|
| 66 |
num_images: int = 4,
|
| 67 |
randomize_seed: bool = False,
|
| 68 |
+
progress = gr.Progress(track_tqdm=True),
|
| 69 |
+
profile: gr.OAuthProfile | None = None,
|
| 70 |
) -> PIL.Image.Image:
|
| 71 |
seed = randomize_seed_fn(seed, randomize_seed)
|
| 72 |
torch.manual_seed(seed)
|
|
|
|
| 81 |
lcm_origin_steps=50,
|
| 82 |
output_type="pil",
|
| 83 |
).images
|
| 84 |
+
paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
|
| 85 |
print(time.time() - start_time)
|
| 86 |
return paths, seed
|
| 87 |
|
|
|
|
| 162 |
visible=False,
|
| 163 |
)
|
| 164 |
|
| 165 |
+
with gr.Accordion("Past generations", open=False):
|
| 166 |
+
gr_user_history.render()
|
| 167 |
+
|
| 168 |
gr.Examples(
|
| 169 |
examples=examples,
|
| 170 |
inputs=prompt,
|