Sigurdur commited on
Commit
32d1f75
·
verified ·
1 Parent(s): d7ba42d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -62
app.py CHANGED
@@ -1,63 +1,30 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Sigurdur/gpt-sw3-126m-nqii-ruqad")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": f"### QUESTION: {system_message}"}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
3
+ from threading import Thread
4
+
5
+ model = AutoModelForCausalLM.from_pretrained("Sigurdur/gpt-sw3-126m-nqii-ruqad")
6
+ tokenizer = AutoTokenizer.from_pretrained("Sigurdur/gpt-sw3-126m-nqii-ruqad")
7
+
8
+
9
+ def streaming_respond(question, history):
10
+ input_ids = tokenizer.encode(f"### Question: {question} ### Answer:\n", return_tensors="pt")
11
+ streamer = TextIteratorStreamer(
12
+ tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
13
+ )
14
+ generate_kwargs = dict(
15
+ {"input_ids": input_ids},
16
+ streamer=streamer,
17
+ max_new_tokens=100,
18
+ temperature=0.7,
19
+ num_beams=1,
20
+ )
21
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
22
+ t.start()
23
+
24
+ outputs = []
25
+ for text in streamer:
26
+ outputs.append(text)
27
+ yield "".join(outputs)
28
+
29
+
30
+ gr.ChatInterface(streaming_respond).launch()