GigachatProj / app.py
AritORR's picture
piska0
3bbb15e
raw
history blame
2.22 kB
import datasets
import evaluate
import pandas as pd
import numpy as np
from datasets import Dataset
from sklearn.model_selection import train_test_split
from transformers import (AutoTokenizer, AutoModelForSequenceClassification,
TrainingArguments, Trainer)
model_name = "DeepPavlov/rubert-base-cased"
# Login using e.g. `huggingface-cli login` to access this dataset
splits = {'train': 'data/train-00000-of-00001.parquet', 'test': 'data/test-00000-of-00001.parquet'}
df = pd.read_parquet("hf://datasets/mteb/RuSciBenchOECDClassification/" + splits["train"])
# Конвертируем датафрейм в Dataset
train, test = train_test_split(df, test_size=0.2)
train = Dataset.from_pandas(train)
test = Dataset.from_pandas(test)
# Выполняем предобработку текста
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True)
tokenized_train = train.map(tokenize_function)
tokenized_test = test.map(tokenize_function)
# Загружаем предобученную модель
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=28)
# Задаем параметры обучения
training_args = TrainingArguments(
output_dir='test_trainer_log',
evaluate_during_training=True,
per_device_train_batch_size=6,
per_device_eval_batch_size=6,
num_train_epochs=5,
report_to='none'
)
# Определяем как считать метрику
metric = evaluate.load('f1')
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
# Выполняем обучение
trainer = Trainer(
model = model,
args = training_args,
train_dataset = tokenized_train,
eval_dataset = tokenized_test,
compute_metrics = compute_metrics)
trainer.train()
# Сохраняем модель
save_directory = './pt_save_pretrained'
#tokenizer.save_pretrained(save_directory)
model.save_pretrained(save_directory)
#alternatively save the trainer
#trainer.save_model('CustomModels/CustomHamSpam')