Upload 6 files
Browse files
Data/4535c3c9-7f2b-4eca-b646-879de0a63f30/data_level0.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8783732ca7632e9ef581dc35eb0aa5f1de727d46f16c249daabec4824c4edf99
|
| 3 |
+
size 1676000
|
Data/4535c3c9-7f2b-4eca-b646-879de0a63f30/header.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
|
| 3 |
+
size 100
|
Data/4535c3c9-7f2b-4eca-b646-879de0a63f30/length.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b19222fde386d1b2bb005fc8ab45fdbe43cb0d650a119a0fb7ef6c6c1479479
|
| 3 |
+
size 4000
|
Data/chroma.sqlite3
ADDED
|
Binary file (147 kB). View file
|
|
|
raw_data/so_tay_sinh_vien_ou_data1.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
utils.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_community.document_loaders import TextLoader
|
| 2 |
+
from langchain_community.docstore.document import Document
|
| 3 |
+
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain_community.vectorstores import Chroma
|
| 5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
+
from langchain_community.retrievers import BM25Retriever
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
def split_with_source(text, source):
|
| 11 |
+
splitter = CharacterTextSplitter(
|
| 12 |
+
separator = "\n",
|
| 13 |
+
chunk_size = 256,
|
| 14 |
+
chunk_overlap = 72,
|
| 15 |
+
length_function = len,
|
| 16 |
+
add_start_index = True,
|
| 17 |
+
)
|
| 18 |
+
documents = splitter.create_documents([text])
|
| 19 |
+
for doc in documents:
|
| 20 |
+
doc.metadata["source"] = source
|
| 21 |
+
# print(doc.metadata)
|
| 22 |
+
|
| 23 |
+
return documents
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def count_files_in_folder(folder_path):
|
| 27 |
+
# Kiểm tra xem đường dẫn thư mục có tồn tại không
|
| 28 |
+
if not os.path.isdir(folder_path):
|
| 29 |
+
print("Đường dẫn không hợp lệ.")
|
| 30 |
+
return None
|
| 31 |
+
|
| 32 |
+
# Sử dụng os.listdir() để lấy danh sách các tập tin và thư mục trong thư mục
|
| 33 |
+
files = os.listdir(folder_path)
|
| 34 |
+
|
| 35 |
+
# Đếm số lượng tập tin trong danh sách
|
| 36 |
+
file_count = len(files)
|
| 37 |
+
|
| 38 |
+
return file_count
|
| 39 |
+
|
| 40 |
+
def get_document_from_raw_text():
|
| 41 |
+
documents = [Document(page_content="", metadata={'source': 0})]
|
| 42 |
+
files = os.listdir(os.path.join(os.getcwd(), "raw_data"))
|
| 43 |
+
# print(files)
|
| 44 |
+
for i in files:
|
| 45 |
+
file_path = i
|
| 46 |
+
with open(os.path.join(os.path.join(os.getcwd(), "raw_data"),file_path), 'r', encoding="utf-8") as file:
|
| 47 |
+
# Tiền xử lý văn bản
|
| 48 |
+
content = file.read().replace('\n\n', "\n")
|
| 49 |
+
# content = ''.join(content.split('.'))
|
| 50 |
+
new_doc = content
|
| 51 |
+
texts = split_with_source(new_doc, i)
|
| 52 |
+
documents = documents + texts
|
| 53 |
+
|
| 54 |
+
return documents
|
| 55 |
+
|
| 56 |
+
def load_the_embedding_retrieve(is_ready = False, k = 3, model= 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'):
|
| 57 |
+
if is_ready:
|
| 58 |
+
embeddings = HuggingFaceEmbeddings(model_name=model)
|
| 59 |
+
retriever = Chroma(persist_directory=os.path.join(os.getcwd(), "Data"), embedding_function=embeddings).as_retriever(
|
| 60 |
+
search_kwargs={"k": k}
|
| 61 |
+
)
|
| 62 |
+
else:
|
| 63 |
+
|
| 64 |
+
documents = get_document_from_raw_text()
|
| 65 |
+
|
| 66 |
+
retriever = Chroma.from_documents(documents, embedding=model).as_retriever(
|
| 67 |
+
search_kwargs={"k": k}
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return retriever
|
| 71 |
+
|
| 72 |
+
def load_the_bm25_retrieve(k = 3):
|
| 73 |
+
documents = get_document_from_raw_text()
|
| 74 |
+
bm25_retriever = BM25Retriever.from_documents(documents)
|
| 75 |
+
bm25_retriever.k = k
|
| 76 |
+
|
| 77 |
+
return bm25_retriever
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|