Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import logging | |
| import os | |
| import shutil | |
| import sys | |
| import tempfile | |
| import torch | |
| from diffusers import VQModel | |
| from diffusers.utils.testing_utils import require_timm | |
| sys.path.append("..") | |
| from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger() | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| logger.addHandler(stream_handler) | |
| class TextToImage(ExamplesTestsAccelerate): | |
| def test_vqmodel_config(self): | |
| return { | |
| "_class_name": "VQModel", | |
| "_diffusers_version": "0.17.0.dev0", | |
| "act_fn": "silu", | |
| "block_out_channels": [ | |
| 32, | |
| ], | |
| "down_block_types": [ | |
| "DownEncoderBlock2D", | |
| ], | |
| "in_channels": 3, | |
| "latent_channels": 4, | |
| "layers_per_block": 2, | |
| "norm_num_groups": 32, | |
| "norm_type": "spatial", | |
| "num_vq_embeddings": 32, | |
| "out_channels": 3, | |
| "sample_size": 32, | |
| "scaling_factor": 0.18215, | |
| "up_block_types": [ | |
| "UpDecoderBlock2D", | |
| ], | |
| "vq_embed_dim": 4, | |
| } | |
| def test_discriminator_config(self): | |
| return { | |
| "_class_name": "Discriminator", | |
| "_diffusers_version": "0.27.0.dev0", | |
| "in_channels": 3, | |
| "cond_channels": 0, | |
| "hidden_channels": 8, | |
| "depth": 4, | |
| } | |
| def get_vq_and_discriminator_configs(self, tmpdir): | |
| vqmodel_config_path = os.path.join(tmpdir, "vqmodel.json") | |
| discriminator_config_path = os.path.join(tmpdir, "discriminator.json") | |
| with open(vqmodel_config_path, "w") as fp: | |
| json.dump(self.test_vqmodel_config, fp) | |
| with open(discriminator_config_path, "w") as fp: | |
| json.dump(self.test_discriminator_config, fp) | |
| return vqmodel_config_path, discriminator_config_path | |
| def test_vqmodel(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
| test_args = f""" | |
| examples/vqgan/train_vqgan.py | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 32 | |
| --image_column image | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --model_config_name_or_path {vqmodel_config_path} | |
| --discriminator_config_name_or_path {discriminator_config_path} | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue( | |
| os.path.isfile(os.path.join(tmpdir, "discriminator", "diffusion_pytorch_model.safetensors")) | |
| ) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "vqmodel", "diffusion_pytorch_model.safetensors"))) | |
| def test_vqmodel_checkpointing(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
| # Run training script with checkpointing | |
| # max_train_steps == 4, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/vqgan/train_vqgan.py | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 32 | |
| --image_column image | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 4 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --model_config_name_or_path {vqmodel_config_path} | |
| --discriminator_config_name_or_path {discriminator_config_path} | |
| --checkpointing_steps=2 | |
| --output_dir {tmpdir} | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| # check checkpoint directories exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-2", "checkpoint-4"}, | |
| ) | |
| # check can run an intermediate checkpoint | |
| model = VQModel.from_pretrained(tmpdir, subfolder="checkpoint-2/vqmodel") | |
| image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
| _ = model(image) | |
| # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
| shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-4"}, | |
| ) | |
| # Run training script for 2 total steps resuming from checkpoint 4 | |
| resume_run_args = f""" | |
| examples/vqgan/train_vqgan.py | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 32 | |
| --image_column image | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 6 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --model_config_name_or_path {vqmodel_config_path} | |
| --discriminator_config_name_or_path {discriminator_config_path} | |
| --checkpointing_steps=1 | |
| --resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} | |
| --output_dir {tmpdir} | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| # check can run new fully trained pipeline | |
| model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
| image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
| _ = model(image) | |
| # no checkpoint-2 -> check old checkpoints do not exist | |
| # check new checkpoints exist | |
| # In the current script, checkpointing_steps 1 is equivalent to checkpointing_steps 2 as after the generator gets trained for one step, | |
| # the discriminator gets trained and loss and saving happens after that. Thus we do not expect to get a checkpoint-5 | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-4", "checkpoint-6"}, | |
| ) | |
| def test_vqmodel_checkpointing_use_ema(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
| # Run training script with checkpointing | |
| # max_train_steps == 4, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/vqgan/train_vqgan.py | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 32 | |
| --image_column image | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 4 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --model_config_name_or_path {vqmodel_config_path} | |
| --discriminator_config_name_or_path {discriminator_config_path} | |
| --checkpointing_steps=2 | |
| --output_dir {tmpdir} | |
| --use_ema | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
| image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
| _ = model(image) | |
| # check checkpoint directories exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-2", "checkpoint-4"}, | |
| ) | |
| # check can run an intermediate checkpoint | |
| model = VQModel.from_pretrained(tmpdir, subfolder="checkpoint-2/vqmodel") | |
| image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
| _ = model(image) | |
| # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
| shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
| # Run training script for 2 total steps resuming from checkpoint 4 | |
| resume_run_args = f""" | |
| examples/vqgan/train_vqgan.py | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 32 | |
| --image_column image | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 6 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --model_config_name_or_path {vqmodel_config_path} | |
| --discriminator_config_name_or_path {discriminator_config_path} | |
| --checkpointing_steps=1 | |
| --resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} | |
| --output_dir {tmpdir} | |
| --use_ema | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| # check can run new fully trained pipeline | |
| model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
| image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
| _ = model(image) | |
| # no checkpoint-2 -> check old checkpoints do not exist | |
| # check new checkpoints exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-4", "checkpoint-6"}, | |
| ) | |
| def test_vqmodel_checkpointing_checkpoints_total_limit(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
| # Run training script with checkpointing | |
| # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 | |
| # Should create checkpoints at steps 2, 4, 6 | |
| # with checkpoint at step 2 deleted | |
| initial_run_args = f""" | |
| examples/vqgan/train_vqgan.py | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 32 | |
| --image_column image | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 6 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --model_config_name_or_path {vqmodel_config_path} | |
| --discriminator_config_name_or_path {discriminator_config_path} | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --checkpoints_total_limit=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
| image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
| _ = model(image) | |
| # check checkpoint directories exist | |
| # checkpoint-2 should have been deleted | |
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) | |
| def test_vqmodel_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
| # Run training script with checkpointing | |
| # max_train_steps == 4, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/vqgan/train_vqgan.py | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 32 | |
| --image_column image | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 4 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --model_config_name_or_path {vqmodel_config_path} | |
| --discriminator_config_name_or_path {discriminator_config_path} | |
| --checkpointing_steps=2 | |
| --output_dir {tmpdir} | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
| image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
| _ = model(image) | |
| # check checkpoint directories exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-2", "checkpoint-4"}, | |
| ) | |
| # resume and we should try to checkpoint at 6, where we'll have to remove | |
| # checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint | |
| resume_run_args = f""" | |
| examples/vqgan/train_vqgan.py | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 32 | |
| --image_column image | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 8 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --model_config_name_or_path {vqmodel_config_path} | |
| --discriminator_config_name_or_path {discriminator_config_path} | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} | |
| --checkpoints_total_limit=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
| image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
| _ = model(image) | |
| # check checkpoint directories exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-6", "checkpoint-8"}, | |
| ) | |