Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,70 +2,84 @@
|
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
5 |
-
|
6 |
from model import create_effnetb2_model
|
7 |
from timeit import default_timer as timer
|
8 |
from typing import Tuple, Dict
|
9 |
|
10 |
# Setup class names
|
11 |
-
|
12 |
-
class_names
|
|
|
|
|
|
|
13 |
|
14 |
### 2. Model and transforms preparation ###
|
15 |
|
16 |
# Create model
|
17 |
-
|
18 |
-
|
19 |
-
)
|
|
|
|
|
|
|
20 |
|
21 |
# Load saved weights
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
26 |
)
|
27 |
-
|
|
|
|
|
|
|
28 |
|
29 |
### 3. Predict function ###
|
30 |
|
31 |
-
# Create predict function
|
32 |
def predict(img) -> Tuple[Dict, float]:
|
33 |
-
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
### 4. Gradio app ###
|
60 |
|
61 |
-
# Create title, description
|
62 |
title = "FoodVision 101 ๐๐"
|
63 |
-
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into
|
64 |
-
#(https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
|
65 |
-
#article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
66 |
|
67 |
# Create examples list from "examples/" directory
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Create Gradio interface
|
71 |
demo = gr.Interface(
|
@@ -78,9 +92,7 @@ demo = gr.Interface(
|
|
78 |
examples=example_list,
|
79 |
title=title,
|
80 |
description=description,
|
81 |
-
#article=article,
|
82 |
)
|
83 |
|
84 |
-
# Launch the app
|
85 |
-
demo.launch()
|
86 |
-
|
|
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
|
|
5 |
from model import create_effnetb2_model
|
6 |
from timeit import default_timer as timer
|
7 |
from typing import Tuple, Dict
|
8 |
|
9 |
# Setup class names
|
10 |
+
try:
|
11 |
+
with open("class_names.txt", "r") as f: # reading them in from class_names.txt
|
12 |
+
class_names = [food_name.strip() for food_name in f.readlines()]
|
13 |
+
except FileNotFoundError:
|
14 |
+
raise FileNotFoundError("class_names.txt not found. Ensure it exists in the root directory.")
|
15 |
|
16 |
### 2. Model and transforms preparation ###
|
17 |
|
18 |
# Create model
|
19 |
+
try:
|
20 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
21 |
+
num_classes=101, # could also use len(class_names)
|
22 |
+
)
|
23 |
+
except Exception as e:
|
24 |
+
raise Exception(f"Error creating model: {str(e)}")
|
25 |
|
26 |
# Load saved weights
|
27 |
+
try:
|
28 |
+
effnetb2.load_state_dict(
|
29 |
+
torch.load(
|
30 |
+
f="09_pretrained_effnetb2_feature_extractor_food101.pth",
|
31 |
+
map_location=torch.device("cpu"), # load to CPU
|
32 |
+
)
|
33 |
)
|
34 |
+
except FileNotFoundError:
|
35 |
+
raise FileNotFoundError("Model weights file '09_pretrained_effnetb2_feature_extractor_food101.pth' not found.")
|
36 |
+
except Exception as e:
|
37 |
+
raise Exception(f"Error loading model weights: {str(e)}")
|
38 |
|
39 |
### 3. Predict function ###
|
40 |
|
|
|
41 |
def predict(img) -> Tuple[Dict, float]:
|
42 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken."""
|
43 |
+
try:
|
44 |
+
# Start the timer
|
45 |
+
start_time = timer()
|
46 |
+
|
47 |
+
# Transform the target image and add a batch dimension
|
48 |
+
if img is None:
|
49 |
+
raise ValueError("Input image is None. Please provide a valid image.")
|
50 |
+
img = effnetb2_transforms(img).unsqueeze(0)
|
51 |
+
|
52 |
+
# Put model into evaluation mode and turn on inference mode
|
53 |
+
effnetb2.eval()
|
54 |
+
with torch.inference_mode():
|
55 |
+
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
56 |
+
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
57 |
+
|
58 |
+
# Create a prediction label and prediction probability dictionary for each prediction class
|
59 |
+
pred_labels_and_probs = {
|
60 |
+
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
|
61 |
+
}
|
62 |
+
|
63 |
+
# Calculate the prediction time
|
64 |
+
pred_time = round(timer() - start_time, 5)
|
65 |
+
|
66 |
+
# Return the prediction dictionary and prediction time
|
67 |
+
return pred_labels_and_probs, pred_time
|
68 |
+
except Exception as e:
|
69 |
+
return {"error": f"Prediction failed: {str(e)}"}, 0.0
|
70 |
|
71 |
### 4. Gradio app ###
|
72 |
|
73 |
+
# Create title, description
|
74 |
title = "FoodVision 101 ๐๐"
|
75 |
+
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into 101 different classes."
|
|
|
|
|
76 |
|
77 |
# Create examples list from "examples/" directory
|
78 |
+
try:
|
79 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
80 |
+
except FileNotFoundError:
|
81 |
+
example_list = []
|
82 |
+
print("Warning: 'examples/' directory not found. No example images will be loaded.")
|
83 |
|
84 |
# Create Gradio interface
|
85 |
demo = gr.Interface(
|
|
|
92 |
examples=example_list,
|
93 |
title=title,
|
94 |
description=description,
|
|
|
95 |
)
|
96 |
|
97 |
+
# Launch the app with share=True for Hugging Face Spaces
|
98 |
+
demo.launch(share=True)
|
|