Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
import pkg_resources | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Check Gradio version | |
try: | |
gradio_version = pkg_resources.get_distribution("gradio").version | |
logger.info(f"Using Gradio version: {gradio_version}") | |
except pkg_resources.DistributionNotFound: | |
raise ImportError("Gradio is not installed. Please install it using 'pip install gradio'.") | |
# Load class names | |
try: | |
with open("class_names.txt", "r") as f: | |
class_names = [food_name.strip() for food_name in f.readlines()] | |
logger.info("Class names loaded successfully") | |
except FileNotFoundError: | |
logger.error("class_names.txt not found") | |
raise FileNotFoundError("class_names.txt not found.") | |
# Model and transforms preparation | |
try: | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101) | |
logger.info("EfficientNetB2 model created successfully") | |
except Exception as e: | |
logger.error(f"Error creating model: {str(e)}") | |
raise Exception(f"Error creating model: {str(e)}") | |
# Load weights | |
try: | |
effnetb2.load_state_dict( | |
torch.load( | |
"09_pretrained_effnetb2_feature_extractor_food101.pth", | |
map_location=torch.device("cpu"), | |
) | |
) | |
logger.info("Model weights loaded successfully") | |
except FileNotFoundError: | |
logger.error("Model weights file not found") | |
raise FileNotFoundError("Model weights file not found.") | |
except Exception as e: | |
logger.error(f"Error loading weights: {str(e)}") | |
raise Exception(f"Error loading weights: {str(e)}") | |
# Predict function | |
def predict(img) -> Tuple[Dict, float]: | |
try: | |
start_time = timer() | |
if img is None: | |
raise ValueError("Input image is None.") | |
img = effnetb2_transforms(img).unsqueeze(0) | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
pred_time = round(timer() - start_time, 5) | |
logger.info(f"Prediction completed: {pred_labels_and_probs}, Time: {pred_time}") | |
return pred_labels_and_probs, pred_time | |
except Exception as e: | |
logger.error(f"Prediction failed: {str(e)}") | |
return {"error": f"Prediction failed: {str(e)}"}, 0.0 | |
# Gradio app | |
title = "FoodVision 101 ๐๐" | |
description = "An EfficientNetB2 feature extractor to classify 101 food classes." | |
try: | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
logger.info("Examples loaded successfully") | |
except FileNotFoundError: | |
example_list = [] | |
logger.warning("'examples/' directory not found") | |
# Simplified Gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)"), | |
], | |
examples=example_list, | |
title=title, | |
description=description, | |
allow_flagging="never", # Disable flagging to simplify API | |
api_mode=False, # Disable API mode to avoid schema generation | |
) | |
# Launch with share=True for Hugging Face Spaces | |
try: | |
demo.launch(share=True) | |
logger.info("Gradio app launched successfully") | |
except Exception as e: | |
logger.error(f"Failed to launch Gradio app: {str(e)}") | |
raise Exception(f"Failed to launch Gradio app: {str(e)}") |