Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,203 +1,772 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
import gradio as gr
|
5 |
-
|
6 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
-
from langchain.vectorstores import FAISS
|
8 |
-
from langchain.schema import Document
|
9 |
from duckduckgo_search import DDGS
|
10 |
-
from
|
11 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Load environment variables
|
14 |
-
load_dotenv()
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
-
|
19 |
|
20 |
# Environment variables and configurations
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
MODELS = [
|
23 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
24 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
25 |
-
"
|
26 |
-
"
|
27 |
-
|
28 |
-
"google/gemma-2-9b-it",
|
29 |
-
"google/gemma-2-27b-it"
|
30 |
-
]
|
31 |
|
32 |
-
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
|
33 |
-
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
|
34 |
-
Providing comprehensive and accurate information based on web search results is essential.
|
35 |
-
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
|
36 |
-
Please ensure that your response is well-structured and factual.
|
37 |
-
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
except Exception as e:
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
@lru_cache(maxsize=1)
|
54 |
def get_embeddings():
|
55 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
embed = get_embeddings()
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
search_results = searcher.search(query)
|
72 |
|
73 |
-
if not
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
relevant_docs = retriever.get_relevant_documents(query)
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
else:
|
87 |
-
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
|
|
92 |
{context}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
try:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
except Exception as e:
|
114 |
-
|
115 |
-
yield f"
|
116 |
-
|
117 |
if not full_response:
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
yield f"{full_response}\n\nSources:\n{source_list_str}", ""
|
122 |
|
123 |
-
async def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
|
124 |
-
logger.info(f"User Query: {message}")
|
125 |
-
logger.info(f"Model Used: {model}")
|
126 |
-
logger.info(f"Temperature: {temperature}")
|
127 |
-
logger.info(f"Number of API Calls: {num_calls}")
|
128 |
-
logger.info(f"Use Embeddings: {use_embeddings}")
|
129 |
-
logger.info(f"System Prompt: {system_prompt}")
|
130 |
|
131 |
-
try:
|
132 |
-
async for main_content, sources in get_response_with_search(message, system_prompt, model, use_embeddings, num_calls=num_calls, temperature=temperature):
|
133 |
-
yield main_content
|
134 |
-
except asyncio.CancelledError:
|
135 |
-
logger.warning("The operation was cancelled.")
|
136 |
-
yield "The operation was cancelled. Please try again."
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Error in respond function: {str(e)}")
|
139 |
-
yield f"An error occurred: {str(e)}"
|
140 |
|
141 |
css = """
|
142 |
/* Fine-tune chatbox size */
|
143 |
-
.chatbot-container {
|
144 |
-
height: 600px !important;
|
145 |
-
width: 100% !important;
|
146 |
-
}
|
147 |
-
.chatbot-container > div {
|
148 |
-
height: 100%;
|
149 |
-
width: 100%;
|
150 |
}
|
151 |
"""
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
)
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
-
|
203 |
demo.launch(share=True)
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
+
import re
|
4 |
import gradio as gr
|
5 |
+
import requests
|
|
|
|
|
|
|
6 |
from duckduckgo_search import DDGS
|
7 |
+
from typing import List
|
8 |
+
from pydantic import BaseModel, Field
|
9 |
+
from tempfile import NamedTemporaryFile
|
10 |
+
from langchain_community.vectorstores import FAISS
|
11 |
+
from langchain_core.vectorstores import VectorStore
|
12 |
+
from langchain_core.documents import Document
|
13 |
+
from langchain_community.document_loaders import PyPDFLoader
|
14 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
15 |
+
from llama_parse import LlamaParse
|
16 |
+
from langchain_core.documents import Document
|
17 |
+
from huggingface_hub import InferenceClient
|
18 |
+
import inspect
|
19 |
+
import logging
|
20 |
+
import shutil
|
21 |
+
|
22 |
+
|
23 |
|
|
|
|
|
24 |
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# Set up basic configuration for logging
|
29 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
30 |
+
|
31 |
|
32 |
# Environment variables and configurations
|
33 |
+
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
34 |
+
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
35 |
+
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
|
36 |
+
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
|
37 |
+
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
|
38 |
+
|
39 |
+
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
|
40 |
+
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
|
41 |
+
|
42 |
MODELS = [
|
43 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
44 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
45 |
+
"@cf/meta/llama-3.1-8b-instruct",
|
46 |
+
"mistralai/Mistral-Nemo-Instruct-2407"
|
47 |
+
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
]
|
51 |
+
|
52 |
+
# Initialize LlamaParse
|
53 |
+
llama_parser = LlamaParse(
|
54 |
+
api_key=llama_cloud_api_key,
|
55 |
+
result_type="markdown",
|
56 |
+
num_workers=4,
|
57 |
+
verbose=True,
|
58 |
+
language="en",
|
59 |
+
)
|
60 |
|
61 |
+
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
62 |
+
"""Loads and splits the document into pages."""
|
63 |
+
if parser == "pypdf":
|
64 |
+
loader = PyPDFLoader(file.name)
|
65 |
+
return loader.load_and_split()
|
66 |
+
elif parser == "llamaparse":
|
67 |
try:
|
68 |
+
documents = llama_parser.load_data(file.name)
|
69 |
+
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
|
70 |
+
|
71 |
except Exception as e:
|
72 |
+
print(f"Error using Llama Parse: {str(e)}")
|
73 |
+
print("Falling back to PyPDF parser")
|
74 |
+
loader = PyPDFLoader(file.name)
|
75 |
+
return loader.load_and_split()
|
76 |
+
else:
|
77 |
+
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
78 |
+
|
79 |
|
|
|
80 |
def get_embeddings():
|
81 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
82 |
|
83 |
+
# Add this at the beginning of your script, after imports
|
84 |
+
DOCUMENTS_FILE = "uploaded_documents.json"
|
85 |
+
|
86 |
+
def load_documents():
|
87 |
+
if os.path.exists(DOCUMENTS_FILE):
|
88 |
+
with open(DOCUMENTS_FILE, "r") as f:
|
89 |
+
return json.load(f)
|
90 |
+
return []
|
91 |
+
|
92 |
+
def save_documents(documents):
|
93 |
+
with open(DOCUMENTS_FILE, "w") as f:
|
94 |
+
json.dump(documents, f)
|
95 |
+
|
96 |
+
# Replace the global uploaded_documents with this
|
97 |
+
uploaded_documents = load_documents()
|
98 |
+
|
99 |
+
# Modify the update_vectors function
|
100 |
+
def update_vectors(files, parser):
|
101 |
+
global uploaded_documents
|
102 |
+
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
103 |
+
|
104 |
+
if not files:
|
105 |
+
logging.warning("No files provided for update_vectors")
|
106 |
+
return "Please upload at least one PDF file.", display_documents()
|
107 |
+
|
108 |
embed = get_embeddings()
|
109 |
+
total_chunks = 0
|
110 |
+
|
111 |
+
all_data = []
|
112 |
+
for file in files:
|
113 |
+
logging.info(f"Processing file: {file.name}")
|
114 |
+
try:
|
115 |
+
data = load_document(file, parser)
|
116 |
+
if not data:
|
117 |
+
logging.warning(f"No chunks loaded from {file.name}")
|
118 |
+
continue
|
119 |
+
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
120 |
+
all_data.extend(data)
|
121 |
+
total_chunks += len(data)
|
122 |
+
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
123 |
+
uploaded_documents.append({"name": file.name, "selected": True})
|
124 |
+
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
125 |
+
else:
|
126 |
+
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
127 |
+
except Exception as e:
|
128 |
+
logging.error(f"Error processing file {file.name}: {str(e)}")
|
129 |
+
|
130 |
+
logging.info(f"Total chunks processed: {total_chunks}")
|
131 |
+
|
132 |
+
if not all_data:
|
133 |
+
logging.warning("No valid data extracted from uploaded files")
|
134 |
+
return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents()
|
135 |
+
|
136 |
+
try:
|
137 |
+
if os.path.exists("faiss_database"):
|
138 |
+
logging.info("Updating existing FAISS database")
|
139 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
140 |
+
database.add_documents(all_data)
|
141 |
+
else:
|
142 |
+
logging.info("Creating new FAISS database")
|
143 |
+
database = FAISS.from_documents(all_data, embed)
|
144 |
+
|
145 |
+
database.save_local("faiss_database")
|
146 |
+
logging.info("FAISS database saved")
|
147 |
+
except Exception as e:
|
148 |
+
logging.error(f"Error updating FAISS database: {str(e)}")
|
149 |
+
return f"Error updating vector store: {str(e)}", display_documents()
|
150 |
+
|
151 |
+
# Save the updated list of documents
|
152 |
+
save_documents(uploaded_documents)
|
153 |
+
|
154 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents()
|
155 |
|
156 |
+
def delete_documents(selected_docs):
|
157 |
+
global uploaded_documents
|
|
|
158 |
|
159 |
+
if not selected_docs:
|
160 |
+
return "No documents selected for deletion.", display_documents()
|
161 |
+
|
162 |
+
embed = get_embeddings()
|
163 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
164 |
+
|
165 |
+
deleted_docs = []
|
166 |
+
docs_to_keep = []
|
167 |
+
for doc in database.docstore._dict.values():
|
168 |
+
if doc.metadata.get("source") not in selected_docs:
|
169 |
+
docs_to_keep.append(doc)
|
170 |
+
else:
|
171 |
+
deleted_docs.append(doc.metadata.get("source", "Unknown"))
|
172 |
+
|
173 |
+
# Print debugging information
|
174 |
+
logging.info(f"Total documents before deletion: {len(database.docstore._dict)}")
|
175 |
+
logging.info(f"Documents to keep: {len(docs_to_keep)}")
|
176 |
+
logging.info(f"Documents to delete: {len(deleted_docs)}")
|
177 |
+
|
178 |
+
if not docs_to_keep:
|
179 |
+
# If all documents are deleted, remove the FAISS database directory
|
180 |
+
if os.path.exists("faiss_database"):
|
181 |
+
shutil.rmtree("faiss_database")
|
182 |
+
logging.info("All documents deleted. Removed FAISS database directory.")
|
183 |
+
else:
|
184 |
+
# Create new FAISS index with remaining documents
|
185 |
+
new_database = FAISS.from_documents(docs_to_keep, embed)
|
186 |
+
new_database.save_local("faiss_database")
|
187 |
+
logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.")
|
188 |
+
|
189 |
+
# Update uploaded_documents list
|
190 |
+
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs]
|
191 |
+
save_documents(uploaded_documents)
|
192 |
+
|
193 |
+
return f"Deleted documents: {', '.join(deleted_docs)}", display_documents()
|
194 |
+
|
195 |
+
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
|
196 |
+
print(f"Starting generate_chunked_response with {num_calls} calls")
|
197 |
+
full_response = ""
|
198 |
+
messages = [{"role": "user", "content": prompt}]
|
199 |
+
|
200 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
201 |
+
# Cloudflare API
|
202 |
+
for i in range(num_calls):
|
203 |
+
print(f"Starting Cloudflare API call {i+1}")
|
204 |
+
if should_stop:
|
205 |
+
print("Stop clicked, breaking loop")
|
206 |
+
break
|
207 |
+
try:
|
208 |
+
response = requests.post(
|
209 |
+
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
210 |
+
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
211 |
+
json={
|
212 |
+
"stream": true,
|
213 |
+
"messages": [
|
214 |
+
{"role": "system", "content": "You are a friendly assistant"},
|
215 |
+
{"role": "user", "content": prompt}
|
216 |
+
],
|
217 |
+
"max_tokens": max_tokens,
|
218 |
+
"temperature": temperature
|
219 |
+
},
|
220 |
+
stream=true
|
221 |
+
)
|
222 |
+
|
223 |
+
for line in response.iter_lines():
|
224 |
+
if should_stop:
|
225 |
+
print("Stop clicked during streaming, breaking")
|
226 |
+
break
|
227 |
+
if line:
|
228 |
+
try:
|
229 |
+
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
|
230 |
+
chunk = json_data['response']
|
231 |
+
full_response += chunk
|
232 |
+
except json.JSONDecodeError:
|
233 |
+
continue
|
234 |
+
print(f"Cloudflare API call {i+1} completed")
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Error in generating response from Cloudflare: {str(e)}")
|
237 |
+
else:
|
238 |
+
# Original Hugging Face API logic
|
239 |
+
client = InferenceClient(model, token=huggingface_token)
|
240 |
+
|
241 |
+
for i in range(num_calls):
|
242 |
+
print(f"Starting Hugging Face API call {i+1}")
|
243 |
+
if should_stop:
|
244 |
+
print("Stop clicked, breaking loop")
|
245 |
+
break
|
246 |
+
try:
|
247 |
+
for message in client.chat_completion(
|
248 |
+
messages=messages,
|
249 |
+
max_tokens=max_tokens,
|
250 |
+
temperature=temperature,
|
251 |
+
stream=True,
|
252 |
+
):
|
253 |
+
if should_stop:
|
254 |
+
print("Stop clicked during streaming, breaking")
|
255 |
+
break
|
256 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
257 |
+
chunk = message.choices[0].delta.content
|
258 |
+
full_response += chunk
|
259 |
+
print(f"Hugging Face API call {i+1} completed")
|
260 |
+
except Exception as e:
|
261 |
+
print(f"Error in generating response from Hugging Face: {str(e)}")
|
262 |
+
|
263 |
+
# Clean up the response
|
264 |
+
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
265 |
+
clean_response = clean_response.replace("Using the following context:", "").strip()
|
266 |
+
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
|
267 |
+
|
268 |
+
# Remove duplicate paragraphs and sentences
|
269 |
+
paragraphs = clean_response.split('\n\n')
|
270 |
+
unique_paragraphs = []
|
271 |
+
for paragraph in paragraphs:
|
272 |
+
if paragraph not in unique_paragraphs:
|
273 |
+
sentences = paragraph.split('. ')
|
274 |
+
unique_sentences = []
|
275 |
+
for sentence in sentences:
|
276 |
+
if sentence not in unique_sentences:
|
277 |
+
unique_sentences.append(sentence)
|
278 |
+
unique_paragraphs.append('. '.join(unique_sentences))
|
279 |
+
|
280 |
+
final_response = '\n\n'.join(unique_paragraphs)
|
281 |
+
|
282 |
+
print(f"Final clean response: {final_response[:100]}...")
|
283 |
+
return final_response
|
284 |
+
|
285 |
+
def duckduckgo_search(query):
|
286 |
+
with DDGS() as ddgs:
|
287 |
+
results = ddgs.text(query, max_results=5)
|
288 |
+
return results
|
289 |
|
290 |
+
class CitingSources(BaseModel):
|
291 |
+
sources: List[str] = Field(
|
292 |
+
...,
|
293 |
+
description="List of sources to cite. Should be an URL of the source."
|
294 |
+
)
|
295 |
+
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
296 |
+
if not message.strip():
|
297 |
+
return "", history
|
298 |
|
299 |
+
history = history + [(message, "")]
|
300 |
+
|
301 |
+
try:
|
302 |
+
for response in respond(message, history, model, temperature, num_calls, use_web_search):
|
303 |
+
history[-1] = (message, response)
|
304 |
+
yield history
|
305 |
+
except gr.CancelledError:
|
306 |
+
yield history
|
307 |
+
except Exception as e:
|
308 |
+
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
309 |
+
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
310 |
+
yield history
|
311 |
+
|
312 |
+
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
313 |
+
if not history:
|
314 |
+
return history
|
315 |
+
|
316 |
+
last_user_msg = history[-1][0]
|
317 |
+
history = history[:-1] # Remove the last response
|
318 |
+
|
319 |
+
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
320 |
+
|
321 |
+
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs, instruction_key):
|
322 |
+
logging.info(f"User Query: {message}")
|
323 |
+
logging.info(f"Model Used: {model}")
|
324 |
+
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
325 |
+
logging.info(f"Selected Documents: {selected_docs}")
|
326 |
+
logging.info(f"Instruction Key: {instruction_key}")
|
327 |
+
|
328 |
+
try:
|
329 |
+
if instruction_key and instruction_key != "None":
|
330 |
+
# This is a summary generation request
|
331 |
+
instruction = INSTRUCTION_PROMPTS[instruction_key]
|
332 |
+
context_str = get_context_for_summary(selected_docs)
|
333 |
+
message = f"{instruction}\n\nUsing the following context from the PDF documents:\n{context_str}\nGenerate a detailed summary."
|
334 |
+
use_web_search = False # Ensure we use PDF search for summaries
|
335 |
+
|
336 |
+
if use_web_search:
|
337 |
+
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
338 |
+
response = f"{main_content}\n\n{sources}"
|
339 |
+
first_line = response.split('\n')[0] if response else ''
|
340 |
+
# logging.info(f"Generated Response (first line): {first_line}")
|
341 |
+
yield response
|
342 |
+
else:
|
343 |
+
embed = get_embeddings()
|
344 |
+
if os.path.exists("faiss_database"):
|
345 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
346 |
+
retriever = database.as_retriever()
|
347 |
+
|
348 |
+
# Filter relevant documents based on user selection
|
349 |
+
all_relevant_docs = retriever.get_relevant_documents(message)
|
350 |
+
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
351 |
+
|
352 |
+
if not relevant_docs:
|
353 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
354 |
+
return
|
355 |
+
|
356 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
357 |
+
else:
|
358 |
+
context_str = "No documents available."
|
359 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
360 |
+
return
|
361 |
+
|
362 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
363 |
+
# Use Cloudflare API
|
364 |
+
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
365 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
366 |
+
# logging.info(f"Generated Response (first line): {first_line}")
|
367 |
+
yield partial_response
|
368 |
+
else:
|
369 |
+
# Use Hugging Face API
|
370 |
+
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
371 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
372 |
+
# logging.info(f"Generated Response (first line): {first_line}")
|
373 |
+
yield partial_response
|
374 |
+
|
375 |
+
except Exception as e:
|
376 |
+
logging.error(f"Error with {model}: {str(e)}")
|
377 |
+
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
378 |
+
logging.info("Falling back to Mistral model due to Phi-3 error")
|
379 |
+
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
380 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs, instruction_key)
|
381 |
+
else:
|
382 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
383 |
+
|
384 |
+
logging.basicConfig(level=logging.DEBUG)
|
385 |
+
|
386 |
+
def get_context_for_summary(selected_docs):
|
387 |
+
embed = get_embeddings()
|
388 |
+
if os.path.exists("faiss_database"):
|
389 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
390 |
+
retriever = database.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 most relevant chunks
|
391 |
+
|
392 |
+
# Create a generic query that covers common financial summary topics
|
393 |
+
generic_query = "financial performance revenue profit assets liabilities cash flow key metrics highlights"
|
394 |
+
|
395 |
+
relevant_docs = retriever.get_relevant_documents(generic_query)
|
396 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
397 |
+
|
398 |
+
if not filtered_docs:
|
399 |
+
return "No relevant information found in the selected documents for summary generation."
|
400 |
+
|
401 |
+
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
402 |
+
return context_str
|
403 |
+
else:
|
404 |
+
return "No documents available for summary generation."
|
405 |
+
|
406 |
+
def get_context_for_query(query, selected_docs):
|
407 |
+
embed = get_embeddings()
|
408 |
+
if os.path.exists("faiss_database"):
|
409 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
410 |
+
retriever = database.as_retriever(search_kwargs={"k": 3}) # Retrieve top 3 most relevant chunks
|
411 |
+
|
412 |
relevant_docs = retriever.get_relevant_documents(query)
|
413 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
414 |
+
|
415 |
+
if not filtered_docs:
|
416 |
+
return "No relevant information found in the selected documents for the given query."
|
417 |
+
|
418 |
+
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
419 |
+
return context_str
|
420 |
else:
|
421 |
+
return "No documents available to answer the query."
|
422 |
|
423 |
+
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
424 |
+
headers = {
|
425 |
+
"Authorization": f"Bearer {API_TOKEN}",
|
426 |
+
"Content-Type": "application/json"
|
427 |
+
}
|
428 |
+
model = "@cf/meta/llama-3.1-8b-instruct"
|
429 |
|
430 |
+
if search_type == "pdf":
|
431 |
+
instruction = f"""Using the following context from the PDF documents:
|
432 |
{context}
|
433 |
+
Write a detailed and complete response that answers the following user question: '{query}'"""
|
434 |
+
else: # web search
|
435 |
+
instruction = f"""Using the following context:
|
436 |
+
{context}
|
437 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
438 |
+
After writing the document, please provide a list of sources used in your response."""
|
439 |
+
|
440 |
+
inputs = [
|
441 |
+
{"role": "system", "content": instruction},
|
442 |
+
{"role": "user", "content": query}
|
443 |
+
]
|
444 |
|
445 |
+
payload = {
|
446 |
+
"messages": inputs,
|
447 |
+
"stream": True,
|
448 |
+
"temperature": temperature,
|
449 |
+
"max_tokens": 32000
|
450 |
+
}
|
451 |
|
452 |
+
full_response = ""
|
453 |
+
for i in range(num_calls):
|
454 |
try:
|
455 |
+
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
|
456 |
+
if response.status_code == 200:
|
457 |
+
for line in response.iter_lines():
|
458 |
+
if line:
|
459 |
+
try:
|
460 |
+
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
|
461 |
+
if 'response' in json_response:
|
462 |
+
chunk = json_response['response']
|
463 |
+
full_response += chunk
|
464 |
+
yield full_response
|
465 |
+
except (json.JSONDecodeError, IndexError) as e:
|
466 |
+
logging.error(f"Error parsing streaming response: {str(e)}")
|
467 |
+
continue
|
468 |
+
else:
|
469 |
+
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
|
470 |
+
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
|
471 |
except Exception as e:
|
472 |
+
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
|
473 |
+
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
|
474 |
+
|
475 |
if not full_response:
|
476 |
+
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
477 |
+
|
478 |
+
def create_web_search_vectors(search_results):
|
479 |
+
embed = get_embeddings()
|
480 |
+
|
481 |
+
documents = []
|
482 |
+
for result in search_results:
|
483 |
+
if 'body' in result:
|
484 |
+
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
|
485 |
+
documents.append(Document(page_content=content, metadata={"source": result['href']}))
|
486 |
+
|
487 |
+
return FAISS.from_documents(documents, embed)
|
488 |
+
|
489 |
+
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
490 |
+
search_results = duckduckgo_search(query)
|
491 |
+
web_search_database = create_web_search_vectors(search_results)
|
492 |
+
|
493 |
+
if not web_search_database:
|
494 |
+
yield "No web search results available. Please try again.", ""
|
495 |
+
return
|
496 |
+
|
497 |
+
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
498 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
499 |
+
|
500 |
+
context = "\n".join([doc.page_content for doc in relevant_docs])
|
501 |
+
|
502 |
+
prompt = f"""Using the following context from web search results:
|
503 |
+
{context}
|
504 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
505 |
+
After writing the document, please provide a list of sources used in your response."""
|
506 |
+
|
507 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
508 |
+
# Use Cloudflare API
|
509 |
+
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
510 |
+
yield response, "" # Yield streaming response without sources
|
511 |
+
else:
|
512 |
+
# Use Hugging Face API
|
513 |
+
client = InferenceClient(model, token=huggingface_token)
|
514 |
+
|
515 |
+
main_content = ""
|
516 |
+
for i in range(num_calls):
|
517 |
+
for message in client.chat_completion(
|
518 |
+
messages=[{"role": "user", "content": prompt}],
|
519 |
+
max_tokens=10000,
|
520 |
+
temperature=temperature,
|
521 |
+
stream=True,
|
522 |
+
):
|
523 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
524 |
+
chunk = message.choices[0].delta.content
|
525 |
+
main_content += chunk
|
526 |
+
yield main_content, "" # Yield partial main content without sources
|
527 |
+
|
528 |
+
|
529 |
+
|
530 |
+
|
531 |
+
|
532 |
+
INSTRUCTION_PROMPTS = {
|
533 |
+
"Asset Managers": "Summarize the key financial metrics, assets under management, and performance highlights for this asset management company.",
|
534 |
+
"Consumer Finance Companies": "Provide a summary of the company's loan portfolio, interest income, credit quality, and key operational metrics.",
|
535 |
+
"Mortgage REITs": "Summarize the REIT's mortgage-backed securities portfolio, net interest income, book value per share, and dividend yield.",
|
536 |
+
# Add more instruction prompts as needed
|
537 |
+
}
|
538 |
+
|
539 |
+
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
540 |
+
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
541 |
+
|
542 |
+
embed = get_embeddings()
|
543 |
+
if os.path.exists("faiss_database"):
|
544 |
+
logging.info("Loading FAISS database")
|
545 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
546 |
+
else:
|
547 |
+
logging.warning("No FAISS database found")
|
548 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
549 |
+
return
|
550 |
+
|
551 |
+
# Pre-filter the documents
|
552 |
+
filtered_docs = []
|
553 |
+
for doc_id, doc in database.docstore._dict.items():
|
554 |
+
if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs:
|
555 |
+
filtered_docs.append(doc)
|
556 |
+
|
557 |
+
logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}")
|
558 |
+
|
559 |
+
if not filtered_docs:
|
560 |
+
logging.warning(f"No documents found for the selected sources: {selected_docs}")
|
561 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
562 |
+
return
|
563 |
+
|
564 |
+
# Create a new FAISS index with only the selected documents
|
565 |
+
filtered_db = FAISS.from_documents(filtered_docs, embed)
|
566 |
+
|
567 |
+
retriever = filtered_db.as_retriever(search_kwargs={"k": 10})
|
568 |
+
logging.info(f"Retrieving relevant documents for query: {query}")
|
569 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
570 |
+
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
571 |
+
|
572 |
+
for doc in relevant_docs:
|
573 |
+
logging.info(f"Document source: {doc.metadata['source']}")
|
574 |
+
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
575 |
+
|
576 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
577 |
+
logging.info(f"Total context length: {len(context_str)}")
|
578 |
+
|
579 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
580 |
+
logging.info("Using Cloudflare API")
|
581 |
+
# Use Cloudflare API with the retrieved context
|
582 |
+
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
583 |
+
yield response
|
584 |
+
else:
|
585 |
+
logging.info("Using Hugging Face API")
|
586 |
+
# Use Hugging Face API
|
587 |
+
prompt = f"""Using the following context from the PDF documents:
|
588 |
+
{context_str}
|
589 |
+
Write a detailed and complete response that answers the following user question: '{query}'"""
|
590 |
+
|
591 |
+
client = InferenceClient(model, token=huggingface_token)
|
592 |
+
|
593 |
+
response = ""
|
594 |
+
for i in range(num_calls):
|
595 |
+
logging.info(f"API call {i+1}/{num_calls}")
|
596 |
+
for message in client.chat_completion(
|
597 |
+
messages=[{"role": "user", "content": prompt}],
|
598 |
+
max_tokens=10000,
|
599 |
+
temperature=temperature,
|
600 |
+
stream=True,
|
601 |
+
):
|
602 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
603 |
+
chunk = message.choices[0].delta.content
|
604 |
+
response += chunk
|
605 |
+
yield response # Yield partial response
|
606 |
+
|
607 |
+
logging.info("Finished generating response")
|
608 |
+
|
609 |
+
def vote(data: gr.LikeData):
|
610 |
+
if data.liked:
|
611 |
+
print(f"You upvoted this response: {data.value}")
|
612 |
+
else:
|
613 |
+
print(f"You downvoted this response: {data.value}")
|
614 |
+
|
615 |
|
|
|
616 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
617 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
css = """
|
620 |
/* Fine-tune chatbox size */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
621 |
}
|
622 |
"""
|
623 |
|
624 |
+
uploaded_documents = []
|
625 |
+
|
626 |
+
def display_documents():
|
627 |
+
return gr.CheckboxGroup(
|
628 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
629 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
630 |
+
label="Select documents to query or delete"
|
631 |
+
|
632 |
+
|
633 |
+
|
634 |
+
|
635 |
+
|
636 |
+
|
637 |
+
|
638 |
+
|
639 |
+
|
640 |
+
|
641 |
+
|
642 |
+
|
643 |
+
|
644 |
+
|
645 |
+
|
646 |
+
|
647 |
+
|
648 |
+
|
649 |
+
|
650 |
+
|
651 |
+
|
652 |
+
|
653 |
+
|
654 |
+
|
655 |
)
|
656 |
|
657 |
+
def initial_conversation():
|
658 |
+
return [
|
659 |
+
(None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n"
|
660 |
+
"1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n"
|
661 |
+
"2. Use web search to find information\n"
|
662 |
+
"3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n"
|
663 |
+
"4. For any queries feel free to reach out @[email protected] or discord - shreyas094\n\n"
|
664 |
+
"To get started, upload some PDFs or ask me a question!")
|
665 |
+
]
|
666 |
+
# Add this new function
|
667 |
+
def refresh_documents():
|
668 |
+
global uploaded_documents
|
669 |
+
uploaded_documents = load_documents()
|
670 |
+
return display_documents()
|
671 |
+
|
672 |
+
# Define the checkbox outside the demo block
|
673 |
+
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
674 |
+
|
675 |
+
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
676 |
+
|
677 |
+
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
678 |
+
|
679 |
+
instruction_choices = ["None"] + list(INSTRUCTION_PROMPTS.keys())
|
680 |
+
|
681 |
+
demo = gr.ChatInterface(
|
682 |
+
respond,
|
683 |
+
additional_inputs=[
|
684 |
+
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
685 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
686 |
+
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
687 |
+
use_web_search,
|
688 |
+
document_selector,
|
689 |
+
gr.Dropdown(choices=instruction_choices, label="Select Entity Type for Summary", value="None")
|
690 |
+
],
|
691 |
+
title="AI-powered Web Search and PDF Chat Assistant",
|
692 |
+
description="Chat with your PDFs, use web search to answer questions, or generate summaries. Select an Entity Type for Summary to generate a specific summary.",
|
693 |
+
theme=gr.themes.Soft(
|
694 |
+
primary_hue="orange",
|
695 |
+
secondary_hue="amber",
|
696 |
+
neutral_hue="gray",
|
697 |
+
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
|
698 |
+
).set(
|
699 |
+
body_background_fill_dark="#0c0505",
|
700 |
+
block_background_fill_dark="#0c0505",
|
701 |
+
block_border_width="1px",
|
702 |
+
block_title_background_fill_dark="#1b0f0f",
|
703 |
+
input_background_fill_dark="#140b0b",
|
704 |
+
button_secondary_background_fill_dark="#140b0b",
|
705 |
+
border_color_accent_dark="#1b0f0f",
|
706 |
+
border_color_primary_dark="#1b0f0f",
|
707 |
+
background_fill_secondary_dark="#0c0505",
|
708 |
+
color_accent_soft_dark="transparent",
|
709 |
+
code_background_fill_dark="#140b0b"
|
710 |
+
),
|
711 |
+
css=css,
|
712 |
+
examples=[
|
713 |
+
["Tell me about the contents of the uploaded PDFs."],
|
714 |
+
["What are the main topics discussed in the documents?"],
|
715 |
+
["Can you summarize the key points from the PDFs?"]
|
716 |
+
],
|
717 |
+
cache_examples=False,
|
718 |
+
analytics_enabled=False,
|
719 |
+
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
|
720 |
+
chatbot = gr.Chatbot(
|
721 |
+
show_copy_button=True,
|
722 |
+
likeable=True,
|
723 |
+
layout="bubble",
|
724 |
+
height=400,
|
725 |
+
value=initial_conversation()
|
726 |
+
)
|
727 |
+
)
|
728 |
+
|
729 |
+
# Add file upload functionality
|
730 |
+
with demo:
|
731 |
+
gr.Markdown("## Upload and Manage PDF Documents")
|
732 |
+
|
733 |
+
with gr.Row():
|
734 |
+
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
735 |
+
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
736 |
+
update_button = gr.Button("Upload Document")
|
737 |
+
refresh_button = gr.Button("Refresh Document List")
|
738 |
+
|
739 |
+
update_output = gr.Textbox(label="Update Status")
|
740 |
+
delete_button = gr.Button("Delete Selected Documents")
|
741 |
+
|
742 |
+
# Update both the output text and the document selector
|
743 |
+
update_button.click(update_vectors,
|
744 |
+
inputs=[file_input, parser_dropdown],
|
745 |
+
outputs=[update_output, document_selector])
|
746 |
+
|
747 |
+
# Add the refresh button functionality
|
748 |
+
refresh_button.click(refresh_documents,
|
749 |
+
inputs=[],
|
750 |
+
outputs=[document_selector])
|
751 |
+
|
752 |
+
# Add the delete button functionality
|
753 |
+
delete_button.click(delete_documents,
|
754 |
+
inputs=[document_selector],
|
755 |
+
outputs=[update_output, document_selector])
|
756 |
+
|
757 |
+
gr.Markdown(
|
758 |
+
"""
|
759 |
+
## How to use
|
760 |
+
1. Upload PDF documents using the file input at the top.
|
761 |
+
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
762 |
+
3. Select the documents you want to query using the checkboxes.
|
763 |
+
4. Ask questions in the chat interface.
|
764 |
+
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
765 |
+
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
766 |
+
7. Use the provided examples or ask your own questions.
|
767 |
+
"""
|
768 |
+
)
|
769 |
|
770 |
if __name__ == "__main__":
|
771 |
+
|
772 |
demo.launch(share=True)
|