Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceApi | |
from duckduckgo_search import DDGS | |
import requests | |
import json | |
from typing import List | |
from pydantic import BaseModel, Field | |
# Global variables | |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
# Function to perform a DuckDuckGo search | |
def duckduckgo_search(query): | |
with DDGS() as ddgs: | |
results = ddgs.text(query, max_results=5) | |
return results | |
class CitingSources(BaseModel): | |
sources: List[str] = Field( | |
..., | |
description="List of sources to cite. Should be an URL of the source." | |
) | |
def get_response_with_search(query): | |
# Perform the web search | |
search_results = duckduckgo_search(query) | |
# Use the search results as context for the model | |
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" | |
for result in search_results if 'body' in result) | |
# Prompt formatted for Mistral-7B-Instruct | |
prompt = f"""<s>[INST] Using the following context: | |
{context} | |
Write a detailed and complete research document that fulfills the following user request: '{query}' | |
After writing the document, please provide a list of sources used in your response. [/INST]""" | |
# API endpoint for Mistral-7B-Instruct-v0.3 | |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" | |
# Headers | |
headers = {"Authorization": f"Bearer {huggingface_token}"} | |
# Payload | |
payload = { | |
"inputs": prompt, | |
"parameters": { | |
"max_new_tokens": 1000, | |
"temperature": 0.7, | |
"top_p": 0.95, | |
"top_k": 40, | |
"repetition_penalty": 1.1 | |
} | |
} | |
# Make the API call | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 200: | |
result = response.json() | |
if isinstance(result, list) and len(result) > 0: | |
generated_text = result[0].get('generated_text', 'No text generated') | |
# Remove the instruction part | |
content_start = generated_text.find("[/INST]") | |
if content_start != -1: | |
generated_text = generated_text[content_start + 7:].strip() | |
# Split the response into main content and sources | |
parts = generated_text.split("Sources:", 1) | |
main_content = parts[0].strip() | |
sources = parts[1].strip() if len(parts) > 1 else "" | |
return main_content, sources | |
else: | |
return f"Unexpected response format: {result}", "" | |
else: | |
return f"Error: API returned status code {response.status_code}", "" | |
def gradio_interface(query): | |
main_content, sources = get_response_with_search(query) | |
formatted_response = f"{main_content}\n\nSources:\n{sources}" | |
return formatted_response | |
# Gradio interface | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."), | |
outputs="text", | |
title="AI-powered Web Search Assistant", | |
description="Ask a question, and I'll search the web and provide an answer using the Mistral-7B-Instruct model.", | |
examples=[ | |
["Latest news about Yann LeCun"], | |
["Latest news site:github.blog"], | |
["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"], | |
["filetype:pdf intitle:python"] | |
] | |
) | |
if __name__ == "__main__": | |
iface.launch() |