import gradio as gr import asyncio import aiohttp import logging import math import io import numpy as np from newspaper import Article import PyPDF2 from collections import Counter import json from datetime import datetime from sentence_transformers import SentenceTransformer from rank_bm25 import BM25Okapi from sentence_transformers.util import pytorch_cos_sim from enum import Enum from groq import Groq import os from typing import List, Dict, Any, Set, Optional from dotenv import load_dotenv from concurrent.futures import ThreadPoolExecutor from datetime import datetime # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) logger.info("Starting application initialization") # Load environment variables from .env file load_dotenv() logger.info("Environment variables loaded") # Initialize Groq client groq_client = Groq(api_key=os.getenv("GROQ_API_KEY")) logger.info("Groq client initialized") class ScoringMethod(Enum): BM25 = "bm25" TFIDF = "tfidf" COMBINED = "combined" class SafeSearch(Enum): STRICT = 2 MODERATE = 1 NONE = 0 class QueryType(Enum): KNOWLEDGE_BASE = "knowledge_base" WEB_SEARCH = "web_search" SAFE_SEARCH_OPTIONS = [ ("Strict (2)", SafeSearch.STRICT.value), ("Moderate (1)", SafeSearch.MODERATE.value), ("None (0)", SafeSearch.NONE.value) ] async def determine_query_type(query: str, chat_history: List[List[str]], temperature: float = 0.1) -> QueryType: """ Determine whether a query should be answered from knowledge base or require web search. Now with improved context handling. """ logger.info(f'Determining query type for: {query}') try: # Format chat history into a more natural conversation format formatted_history = [] for i, (user_msg, assistant_msg) in enumerate(chat_history[-5:], 1): # Last 5 turns formatted_history.append(f"Turn {i}:") formatted_history.append(f"User: {user_msg}") if assistant_msg: formatted_history.append(f"Assistant: {assistant_msg}") chat_context = "\n".join(formatted_history) system_prompt = """You are Sentinel, an intelligent AI agent tasked with determining whether a user query requires a web search or can be answered using your existing knowledge base. Your knowledge cutoff date is April 2024, and the current date is November 2024. Rules for Classification: 1. RESPOND WITH ONLY "knowledge_base" OR "web_search" - NO OTHER TEXT 2. Consider conversation context: - Look for references to previous turns in the conversation - Check if the query is a follow-up to earlier discussion - Consider if previous context requires updated information 3. Classify as "web_search" if: - Query explicitly asks for current/latest/recent information - References events or data after April 2024 - Requires real-time information (prices, weather, news) - Uses words like "current", "latest", "now", "today" - Asks about ongoing events or situations - Needs verification of recent claims - Is a follow-up question about current events - Previous context involves recent/ongoing events 4. Classify as "knowledge_base" if: - Query is about historical events or facts before April 2024 - Involves general knowledge, concepts, or theories - Is casual conversation or greeting - Asks for explanations of established topics - Requires logical reasoning or analysis - Is about personal opinions or hypotheticals - Is a follow-up to a knowledge-base discussion - Previous context is about historical or conceptual topics""" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"Previous conversation:\n{chat_context}\n\nCurrent query: {query}\n\nClassify this query based on the rules above, considering the conversation context."} ] response = groq_client.chat.completions.create( messages=messages, model="llama-3.1-70b-versatile", temperature=temperature, max_tokens=10, stream=False ) result = response.choices[0].message.content.strip().lower() logger.info(f'Query type determined as: {result} with context') return QueryType.WEB_SEARCH if result == "web_search" else QueryType.KNOWLEDGE_BASE except Exception as e: logger.error(f'Error determining query type: {e}') return QueryType.WEB_SEARCH async def process_knowledge_base_query(query: str, chat_history: List[List[str]], temperature: float = 0.7) -> str: """Handle queries that can be answered from the knowledge base, with context.""" logger.info(f'Processing knowledge base query: {query}') try: # Format recent conversation history formatted_history = [] for i, (user_msg, assistant_msg) in enumerate(chat_history[-5:], 1): formatted_history.append(f"Turn {i}:") formatted_history.append(f"User: {user_msg}") if assistant_msg: formatted_history.append(f"Assistant: {assistant_msg}") chat_context = "\n".join(formatted_history) system_prompt = """You are Sentinel, a highly knowledgeable AI assistant with expertise through April 2024. You provide accurate, informative responses based on your knowledge base while maintaining conversation context. Guidelines: 1. Use the conversation history to provide contextually relevant responses 2. Reference previous turns when appropriate 3. Maintain consistency with previous responses 4. Use markdown formatting for better readability 5. Be clear about historical facts vs. analysis 6. Note if information might be outdated 7. Stay within knowledge cutoff date of April 2024 8. Be direct and conversational 9. Acknowledge and build upon previous context when relevant""" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"Previous conversation:\n{chat_context}\n\nCurrent query: {query}\n\nProvide a comprehensive response based on your knowledge base and the conversation context."} ] response = groq_client.chat.completions.create( messages=messages, model="llama-3.1-70b-versatile", temperature=temperature, max_tokens=2000, stream=False ) return response.choices[0].message.content.strip() except Exception as e: logger.error(f'Error processing knowledge base query: {e}') return f"I apologize, but I encountered an error while processing your query: {str(e)}" async def rephrase_query(chat_history, query, temperature=0.2) -> str: """Rephrase the query based on chat history and context.""" logger.info(f'Rephrasing query: {query}') try: # Format chat history for context formatted_history = [] for user_msg, assistant_msg in chat_history: formatted_history.append({"role": "user", "content": user_msg}) if assistant_msg: # Only add if there's an assistant message formatted_history.append({"role": "assistant", "content": assistant_msg}) current_year = datetime.now().year system_prompt = """You are a highly intelligent and context-aware query rephrasing assistant. Your task is to rephrase search queries while following these strict rules: 1. Entity Handling: - Identify main entities (organizations, brands, products, locations) - Enclose ONLY the entity names in double quotes - Example: "Apple" stock price, not "Apple stock price" 2. Date Handling Rules (VERY IMPORTANT): - For queries about current/latest/recent information: * If query contains words like "latest", "current", "recent", "now", "today": - Keep these words in the query - ALWAYS append "after: YYYY" (current year) at the end * Example: "latest news on "Apple"" becomes "latest news on "Apple" after: 2024" - For queries with specific time periods: * Keep the original time reference * Add appropriate "after: YYYY" based on the mentioned year * Example: "How did "Bank of America" perform in Q2 2023" becomes "How did "Bank of America" perform in Q2 2023 after: 2023" - For queries without any time reference: * ALWAYS append "after: YYYY" (current year) at the end * Example: ""Toyota" market share" becomes ""Toyota" market share after: 2024" 3. Output Format: - First letter should be capitalized - No period at the end - Include all specified date operators - Maintain the entire original query's meaning and context Remember: EVERY query must end with a date operator unless it explicitly references a past date/year.""" # Prepare messages for the API call messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"Current year is {current_year}. Rephrase this query: {query}"} ] # Call Groq API response = groq_client.chat.completions.create( messages=messages, model="llama-3.1-70b-versatile", temperature=temperature, max_tokens=200, stream=False ) rephrased_query = response.choices[0].message.content.strip() logger.info(f'Query rephrased to: {rephrased_query}') return rephrased_query except Exception as e: logger.error(f'Error rephrasing query: {e}') return query # Return original query if rephrasing fails class ParallelScraper: def __init__(self, max_workers: int = 5): logger.info(f"Initializing ParallelScraper with {max_workers} workers") self.executor = ThreadPoolExecutor(max_workers=max_workers) self.session: Optional[aiohttp.ClientSession] = None async def __aenter__(self): logger.info("Creating aiohttp session") self.session = aiohttp.ClientSession() return self async def __aexit__(self, exc_type, exc_val, exc_tb): if self.session: logger.info("Closing aiohttp session") await self.session.close() def parse_article(self, article: Article) -> Dict[str, Any]: """Parse a newspaper Article object in a separate thread""" try: logger.info("Parsing article") article.parse() return { "content": article.text, "publish_date": article.publish_date.isoformat() if article.publish_date else None } except Exception as e: logger.error(f'Error parsing article: {e}') return None async def download_and_parse_html(self, url: str, max_chars: int) -> Dict[str, Any]: """Download and parse HTML content asynchronously""" logger.info(f'Processing HTML URL: {url}') try: article = Article(url) await asyncio.get_event_loop().run_in_executor(self.executor, article.download) result = await asyncio.get_event_loop().run_in_executor(self.executor, self.parse_article, article) if result: result["content"] = result["content"][:max_chars] logger.info(f'Successfully processed HTML from {url}') return result except Exception as e: logger.error(f'Error processing HTML from {url}: {e}') return None async def download_and_parse_pdf(self, url: str, max_chars: int) -> Dict[str, Any]: """Download and parse PDF content asynchronously""" logger.info(f'Processing PDF URL: {url}') try: if not self.session: raise RuntimeError("Session not initialized") async with self.session.get(url) as response: pdf_bytes = await response.read() def process_pdf(): logger.info("Processing PDF content") pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes)) text = "" for page in pdf_reader.pages: text += page.extract_text() return text[:max_chars] text = await asyncio.get_event_loop().run_in_executor(self.executor, process_pdf) logger.info(f'Successfully processed PDF from {url}') return {"content": text, "publish_date": None} except Exception as e: logger.error(f'Error processing PDF from {url}: {e}') return None async def scrape_url(self, url: str, max_chars: int) -> Dict[str, Any]: """Scrape content from a URL, handling both HTML and PDF formats""" logger.info(f'Starting to scrape URL: {url}') if url.endswith('.pdf'): return await self.download_and_parse_pdf(url, max_chars) else: return await self.download_and_parse_html(url, max_chars) async def scrape_urls(self, urls: list, max_chars: int) -> list: """Scrape multiple URLs in parallel""" logger.info(f'Starting parallel scraping of {len(urls)} URLs') tasks = [self.scrape_url(url, max_chars) for url in urls] return await asyncio.gather(*tasks) async def scrape_urls_parallel(results: list, max_chars: int) -> list: """Scrape multiple URLs in parallel using the ParallelScraper""" logger.info(f'Initializing parallel scraping for {len(results)} results') async with ParallelScraper() as scraper: urls = [result["url"] for result in results] scraped_data = await scraper.scrape_urls(urls, max_chars) # Combine results with scraped data valid_results = [] for result, article in zip(results, scraped_data): if article is not None: valid_results.append((result, article)) logger.info(f'Successfully scraped {len(valid_results)} valid results') return valid_results async def get_available_engines(session, base_url, headers): """Fetch available search engines from SearxNG instance.""" logger.info("Fetching available search engines") try: params = { "q": "test", "format": "json", "engines": "all" } async with session.get(f"{base_url}/search", headers=headers, params=params) as response: data = await response.json() available_engines = set() if "search" in data: for engine_data in data["search"]: if isinstance(engine_data, dict) and "engine" in engine_data: available_engines.add(engine_data["engine"]) if not available_engines: async with session.get(f"{base_url}/engines", headers=headers) as response: engines_data = await response.json() available_engines = set(engine["name"] for engine in engines_data if engine.get("enabled", True)) logger.info(f'Found {len(available_engines)} available engines') return list(available_engines) except Exception as e: logger.error(f'Error fetching search engines: {e}') return ["google", "bing", "duckduckgo", "brave", "wikipedia"] def normalize_scores(scores): """Normalize scores to [0, 1] range using min-max normalization""" if not isinstance(scores, np.ndarray): scores = np.array(scores) if len(scores) == 0: return [] min_score = np.min(scores) max_score = np.max(scores) if max_score - min_score > 0: normalized = (scores - min_score) / (max_score - min_score) else: normalized = np.ones_like(scores) return normalized.tolist() async def calculate_bm25(query, documents): """Calculate BM25 scores for documents.""" logger.info("Calculating BM25 scores") try: if not documents: return [] bm25 = BM25Okapi([doc.split() for doc in documents]) scores = bm25.get_scores(query.split()) normalized_scores = normalize_scores(scores) logger.info("BM25 scores calculated successfully") return normalized_scores except Exception as e: logger.error(f'Error calculating BM25 scores: {e}') return [0] * len(documents) async def calculate_tfidf(query, documents, measure="cosine"): """Calculate TF-IDF based similarity scores.""" logger.info("Calculating TF-IDF scores") try: if not documents: return [] model = SentenceTransformer('all-MiniLM-L6-v2') logger.info("Encoding query and documents") query_embedding = model.encode(query) document_embeddings = model.encode(documents) query_embedding = query_embedding / np.linalg.norm(query_embedding) document_embeddings = document_embeddings / np.linalg.norm(document_embeddings, axis=1)[:, np.newaxis] if measure == "cosine": scores = np.dot(document_embeddings, query_embedding) normalized_scores = normalize_scores(scores) logger.info("TF-IDF scores calculated successfully") return normalized_scores else: raise ValueError("Unsupported similarity measure.") except Exception as e: logger.error(f'Error calculating TF-IDF scores: {e}') return [0] * len(documents) def combine_scores(bm25_score, tfidf_score, weights=(0.5, 0.5)): """Combine scores using weighted average.""" return weights[0] * bm25_score + weights[1] * tfidf_score async def get_document_scores(query, documents, scoring_method: ScoringMethod): """Calculate document scores based on the chosen scoring method.""" if not documents: return [] if scoring_method == ScoringMethod.BM25: scores = await calculate_bm25(query, documents) return [(score, 0) for score in scores] elif scoring_method == ScoringMethod.TFIDF: scores = await calculate_tfidf(query, documents) return [(0, score) for score in scores] else: # COMBINED bm25_scores = await calculate_bm25(query, documents) tfidf_scores = await calculate_tfidf(query, documents) return list(zip(bm25_scores, tfidf_scores)) def get_total_score(scores, scoring_method: ScoringMethod): """Calculate total score based on the scoring method.""" bm25_score, tfidf_score = scores if scoring_method == ScoringMethod.BM25: return bm25_score elif scoring_method == ScoringMethod.TFIDF: return tfidf_score else: # COMBINED return combine_scores(bm25_score, tfidf_score) async def generate_summary(query: str, articles: List[Dict[str, Any]], temperature: float = 0.7) -> str: """Generate a summary of the articles using Groq's LLama 3.1 8b model.""" logger.info(f'Generating summary for query: {query}') try: json_input = json.dumps(articles, indent=2) system_prompt = """You are Sentinel, a world-class AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.""" user_prompt = f""" Please provide a comprehensive summary based on the following JSON input: {json_input} Original Query: {query} Instructions: 1. Analyze the query and the provided documents. 2. Write a detailed, long, and complete research document that is informative and relevant to the user's query based on provided context. 3. Use this context to answer the user's query in the best way possible. Use an unbiased and journalistic tone. 4. Use an unbiased and professional tone in your response. 5. Do not repeat text verbatim from the input. 6. Provide the answer in the response itself. 7. Use markdown to format your response. 8. Use bullet points to list information where appropriate. 9. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation. 10. Place these citations at the end of the relevant sentences. 11. You can cite the same sentence multiple times if it's relevant. 12. Make sure the answer is not short and is informative. 13. Your response should be detailed, informative, accurate, and directly relevant to the user's query.""" logger.info("Sending request to Groq API") messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] response = groq_client.chat.completions.create( messages=messages, model="llama-3.1-70b-versatile", max_tokens=5000, temperature=temperature, top_p=0.9, presence_penalty=1.2, stream=False ) logger.info("Summary generated successfully") return response.choices[0].message.content.strip() except Exception as e: logger.error(f'Error generating summary: {e}') return f"Error generating summary: {str(e)}" class ChatBot: def __init__(self): logger.info("Initializing ChatBot") self.scoring_method = ScoringMethod.COMBINED self.num_results = 10 self.max_chars = 10000 self.score_threshold = 0.8 self.temperature = 0.1 self.conversation_history = [] self.base_url = "https://shreyas094-searxng-local.hf.space" self.headers = { "X-Searx-API-Key": "f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5" } self.default_engines = ["google", "bing", "duckduckgo", "brave"] self.available_languages = { "all": "All Languages", "en": "English", "es": "Spanish", "fr": "French", "de": "German", "it": "Italian", "pt": "Portuguese", "ru": "Russian", "zh": "Chinese", "ja": "Japanese", "ko": "Korean" } logger.info("ChatBot initialized successfully") def format_chat_history(self, history: List[List[str]]) -> str: """Format chat history into a readable string with clear turn markers.""" formatted_history = [] for i, (user_msg, assistant_msg) in enumerate(history, 1): formatted_history.append(f"Turn {i}:") formatted_history.append(f"User: {user_msg}") if assistant_msg: formatted_history.append(f"Assistant: {assistant_msg}") return "\n".join(formatted_history) async def get_search_results(self, query: str, history: List[List[str]], num_results: int, max_chars: int, score_threshold: float, temperature: float, scoring_method: str, selected_engines: List[str], safe_search: str, language: str) -> str: logger.info(f'Processing search request for query: {query}') try: # First, rephrase the query using chat history rephrased_query = await rephrase_query(history, query, temperature=0.2) logger.info(f'Original query: {query}') logger.info(f'Rephrased query: {rephrased_query}') scoring_method_map = { "BM25": ScoringMethod.BM25, "TF-IDF": ScoringMethod.TFIDF, "Combined": ScoringMethod.COMBINED } self.scoring_method = scoring_method_map[scoring_method] safe_search_map = dict(SAFE_SEARCH_OPTIONS) safe_search_value = safe_search_map.get(safe_search, SafeSearch.MODERATE.value) logger.info(f'Search parameters - Engines: {selected_engines}, Results: {num_results}, Method: {scoring_method}') # Use the rephrased query for the search async with aiohttp.ClientSession() as session: params = { "q": rephrased_query, # Use rephrased query here "format": "json", "engines": ",".join(selected_engines), "limit": num_results, "safesearch": safe_search_value, } if language != "all": params["language"] = language logger.info("Sending search request to SearxNG") try: async with session.get(f"{self.base_url}/search", headers=self.headers, params=params) as response: data = await response.json() except Exception as e: logger.error(f'SearxNG connection error: {e}') return f"Error: Could not connect to search service. Please check if SearxNG is running at {self.base_url}. Error: {str(e)}" if "results" not in data or not data["results"]: logger.info("No search results found") return "No results found." results = data["results"][:num_results] logger.info(f'Processing {len(results)} search results') valid_results = await scrape_urls_parallel(results, max_chars) if not valid_results: logger.info("No valid articles found after scraping") return "No valid articles found after scraping." results, scraped_data = zip(*valid_results) contents = [article["content"] for article in scraped_data] logger.info("Calculating document scores") scores = await get_document_scores(query, contents, self.scoring_method) scored_articles = [] for i, (score_tuple, article) in enumerate(zip(scores, scraped_data)): total_score = get_total_score(score_tuple, self.scoring_method) if total_score >= self.score_threshold: scored_articles.append({ "url": results[i]["url"], "title": results[i]["title"], "content": article["content"], "publish_date": article["publish_date"], "score": round(total_score, 4), "bm25_score": round(score_tuple[0], 4), "tfidf_score": round(score_tuple[1], 4), "engine": results[i].get("engine", "unknown") }) scored_articles.sort(key=lambda x: x["score"], reverse=True) unique_articles = [] seen_content = set() for article in scored_articles: if article["content"] not in seen_content: seen_content.add(article["content"]) unique_articles.append(article) # Generate summary using Groq API summary = await generate_summary(query, unique_articles, temperature) # Update the response format to use scoring_method instead of scoring_method_str response = f"**Search Parameters:**\n" response += f"- Results: {num_results}\n" response += f"- Max Characters: {max_chars}\n" response += f"- Score Threshold: {score_threshold}\n" response += f"- Temperature: {temperature}\n" response += f"- Scoring Method: {scoring_method}\n" # Updated this line response += f"- Search Engines: {', '.join(selected_engines)}\n" response += f"- Safe Search: Level {safe_search_value}\n" response += f"- Language: {self.available_languages.get(language, language)}\n\n" response += "**Results Summary:**\n" response += summary + "\n\n" response += "**Sources:**\n" for i, article in enumerate(unique_articles, 1): response += f"{i}. [{article['title']}]({article['url']}) (Score: {article['score']})\n" return response except Exception as e: logger.error(f'Error in search_and_summarize: {e}') return f"Error occurred: {str(e)}" async def get_response(self, query: str, history: List[List[str]], num_results: int, max_chars: int, score_threshold: float, temperature: float, scoring_method: str, selected_engines: List[str], safe_search: str, language: str, force_web_search: bool = False) -> str: """Determine query type and route to appropriate handler with context.""" logger.info(f'Processing query: {query}') try: # Update conversation history formatted_history = self.format_chat_history(history) logger.info(f'Current conversation context:\n{formatted_history}') # If force_web_search is True, skip query type determination if force_web_search: logger.info('Force web search mode enabled - bypassing query type determination') query_type = QueryType.WEB_SEARCH else: # Determine query type with context query_type = await determine_query_type(query, history, temperature) if query_type == QueryType.KNOWLEDGE_BASE and not force_web_search: logger.info('Using knowledge base to answer query') response = await process_knowledge_base_query( query=query, chat_history=history, temperature=temperature ) else: logger.info('Using web search to answer query') response = await self.get_search_results( query=query, history=history, num_results=num_results, max_chars=max_chars, score_threshold=score_threshold, temperature=temperature, scoring_method=scoring_method, selected_engines=selected_engines, safe_search=safe_search, language=language ) logger.info(f'Generated response type: {query_type}') return response except Exception as e: logger.error(f'Error in get_response: {e}') return f"I apologize, but I encountered an error: {str(e)}" def chat(self, message: str, history: List[List[str]], num_results: int, max_chars: int, score_threshold: float, temperature: float, scoring_method: str, engines: List[str], safe_search: str, language: str, force_web_search: bool) -> str: """Process chat messages with context and return responses.""" # Extract language code and process response language_code = language.split(" - ")[0] # Update conversation history from the Gradio history self.conversation_history = history response = asyncio.run(self.get_response( message, self.conversation_history, num_results, max_chars, score_threshold, temperature, scoring_method, engines, safe_search, language_code, force_web_search )) return response def create_gradio_interface() -> gr.Interface: chatbot = ChatBot() # Define language options language_choices = [ "all", "en", "es", "fr", "de", "it", "pt", "ru", "zh", "ja", "ko" ] # Create mapping for language display names language_display = { "all": "All Languages", "en": "English", "es": "Spanish", "fr": "French", "de": "German", "it": "Italian", "pt": "Portuguese", "ru": "Russian", "zh": "Chinese", "ja": "Japanese", "ko": "Korean" } # Create the interface with all parameters iface = gr.ChatInterface( chatbot.chat, title="Web Scraper for News with Sentinel AI", description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.", theme=gr.Theme.from_hub("allenai/gradio-theme"), additional_inputs=[ gr.Slider( minimum=5, maximum=30, value=10, step=1, label="Number of Results" ), gr.Slider( minimum=1000, maximum=50000, value=10000, step=1000, label="Max Characters per Article" ), gr.Slider( minimum=0.0, maximum=1.0, value=0.8, step=0.05, label="Score Threshold" ), gr.Slider( minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Temperature" ), gr.Radio( choices=["BM25", "TF-IDF", "Combined"], value="Combined", label="Scoring Method" ), gr.CheckboxGroup( choices=["google", "bing", "duckduckgo", "brave", "wikipedia"], value=["google", "bing", "duckduckgo"], label="Search Engines" ), gr.Radio( choices=[option[0] for option in SAFE_SEARCH_OPTIONS], value="Moderate (1)", label="Safe Search Level", info="Controls the filtering level of search results (0=None, 1=Moderate, 2=Strict)" ), gr.Radio( choices=[f"{code} - {language_display[code]}" for code in language_choices], value="all - All Languages", label="Language", info="Select the preferred language for search results" ), gr.Radio( choices=["Auto (Knowledge Base + Web)", "Web Search Only"], value="Auto (Knowledge Base + Web)", label="Search Mode", info="Choose whether to use both knowledge base and web search, or force web search only" ) ], additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True), retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", chatbot=gr.Chatbot( show_copy_button=True, layout="bubble", height=500, ) ) return iface def create_parameter_description(): return """ ### Parameter Descriptions - **Number of Results**: Number of search results to fetch - **Max Characters**: Maximum characters to analyze per article - **Score Threshold**: Minimum relevance score (0-1) for including articles - **Temperature**: Controls creativity in summary generation (0=focused, 1=creative) - **Scoring Method**: Algorithm for ranking article relevance - BM25: Traditional keyword-based ranking - TF-IDF: Semantic similarity-based ranking - Combined: Balanced approach using both methods - **Search Engines**: Select which search engines to use - **Safe Search Level**: Filter level for search results - Strict: Most restrictive filtering - Moderate: Balanced filtering - None: No content filtering - **Language**: Preferred language for search results - All languages: No language restriction - Specific languages: Filter results to selected language - **Search Mode**: Control how queries are processed - Auto: Automatically choose between knowledge base and web search - Web Search Only: Always use web search regardless of query type """ if __name__ == "__main__": iface = create_gradio_interface() # Create the layout with two columns with gr.Blocks(theme=gr.Theme.from_hub("allenai/gradio-theme")) as demo: with gr.Row(): with gr.Column(scale=3): iface.render() with gr.Column(scale=1): gr.Markdown(create_parameter_description()) # Launch the interface demo.launch(share=True)