Spaces:
Build error
Build error
import argparse | |
from PIL import Image | |
import os | |
import numpy as np | |
import itertools | |
class ImageProcessor: | |
def __init__(self, input_folder, min_group, max_group, include_subfolders, pad): | |
self.input_folder = input_folder | |
self.min_group = min_group | |
self.max_group = max_group | |
self.include_subfolders = include_subfolders | |
self.pad = pad | |
self.image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.webp') | |
self.losses = [] # List to store loss values for each image | |
def get_image_paths(self): | |
images = [] | |
if self.include_subfolders: | |
for dirpath, dirnames, filenames in os.walk(self.input_folder): | |
for filename in filenames: | |
if filename.endswith(self.image_extensions): | |
images.append(os.path.join(dirpath, filename)) | |
else: | |
images = [os.path.join(self.input_folder, f) for f in os.listdir(self.input_folder) if f.endswith(self.image_extensions)] | |
return images | |
def group_images(self, images, group_size): | |
sorted_images = sorted(images, key=lambda path: Image.open(path).size[0] / Image.open(path).size[1]) | |
groups = [sorted_images[i:i+group_size] for i in range(0, len(sorted_images), group_size)] | |
return groups | |
def process_group(self, group): | |
if len(group) > 0: | |
aspect_ratios = self.get_aspect_ratios(group) | |
avg_aspect_ratio = np.mean(aspect_ratios) | |
self.calculate_losses(group, avg_aspect_ratio) | |
def get_aspect_ratios(self, group): | |
aspect_ratios = [] | |
for path in group: | |
with Image.open(path) as img: | |
width, height = img.size | |
aspect_ratios.append(width / height) | |
return aspect_ratios | |
def calculate_losses(self, group, avg_aspect_ratio): | |
for j, path in enumerate(group): | |
with Image.open(path) as img: | |
loss = self.calculate_loss(img, avg_aspect_ratio) | |
self.losses.append((path, loss)) # Add (path, loss) tuple to the list | |
def calculate_loss(self, img, avg_aspect_ratio): | |
img_aspect_ratio = img.width / img.height | |
if img_aspect_ratio > avg_aspect_ratio: | |
# Too wide, reduce width | |
new_width = avg_aspect_ratio * img.height | |
loss = abs(img.width - new_width) / img.width # Calculate loss value | |
else: | |
# Too tall, reduce height | |
new_height = img.width / avg_aspect_ratio | |
loss = abs(img.height - new_height) / img.height # Calculate loss value | |
return loss | |
def monte_carlo_optimization(self, groups): | |
best_groups = groups.copy() | |
best_loss = np.inf | |
best_removed_images = [] | |
for group in groups: | |
num_images = len(group) | |
all_combinations = [] | |
# Generate all possible combinations of images to remove | |
for r in range(1, num_images + 1): | |
combinations = list(itertools.combinations(group, r)) | |
all_combinations.extend(combinations) | |
for combination in all_combinations: | |
self.losses = [] # Reset losses for each combination | |
remaining_images = list(set(group) - set(combination)) | |
self.process_group(remaining_images) | |
avg_loss = np.mean(self.losses) | |
if avg_loss < best_loss: | |
best_loss = avg_loss | |
best_groups[best_groups.index(group)] = remaining_images | |
best_removed_images = combination | |
return best_groups, best_loss, best_removed_images | |
def process_images(self): | |
images = self.get_image_paths() | |
num_images = len(images) | |
results = [] | |
for group_size in range(self.min_group, self.max_group + 1): | |
groups = self.group_images(images, group_size) | |
optimized_groups, avg_loss, removed_images = self.monte_carlo_optimization(groups) | |
num_remaining = num_images % group_size | |
results.append((group_size, avg_loss, num_remaining, optimized_groups, removed_images)) | |
# Sort results based on average crop loss in ascending order | |
sorted_results = sorted(results, key=lambda x: x[1]) | |
for group_size, avg_loss, num_remaining, optimized_groups, removed_images in sorted_results: | |
print(f"Group size: {group_size}, Average crop loss: {avg_loss}, Number of images remaining: {num_remaining}") | |
print(f"Optimized Groups: {optimized_groups}") | |
print(f"Removed Images: {removed_images}") | |
def main(): | |
parser = argparse.ArgumentParser(description='Process groups of images.') | |
parser.add_argument('input_folder', type=str, help='Input folder containing images') | |
parser.add_argument('min_group', type=int, help='Minimum group size') | |
parser.add_argument('max_group', type=int, help='Maximum group size') | |
parser.add_argument('--include_subfolders', action='store_true', help='Include subfolders in search for images') | |
parser.add_argument('--pad', action='store_true', help='Pad images instead of cropping them') | |
args = parser.parse_args() | |
processor = ImageProcessor(args.input_folder, args.min_group, args.max_group, args.include_subfolders, args.pad) | |
processor.process_images() | |
if __name__ == "__main__": | |
main() | |