Spaces:
Build error
Build error
import os, sys | |
sys.path.insert(0, os.getcwd()) | |
import argparse | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"base_model", | |
help="The model which use it to train the dreambooth model", | |
default="", | |
type=str, | |
) | |
parser.add_argument( | |
"db_model", | |
help="the dreambooth model you want to extract the locon", | |
default="", | |
type=str, | |
) | |
parser.add_argument( | |
"output_name", help="the output model", default="./out.pt", type=str | |
) | |
parser.add_argument( | |
"--is_v2", | |
help="Your base/db model is sd v2 or not", | |
default=False, | |
action="store_true", | |
) | |
parser.add_argument( | |
"--is_sdxl", | |
help="Your base/db model is sdxl or not", | |
default=False, | |
action="store_true", | |
) | |
parser.add_argument( | |
"--device", | |
help="Which device you want to use to extract the locon", | |
default="cpu", | |
type=str, | |
) | |
parser.add_argument( | |
"--mode", | |
help=( | |
'extraction mode, can be "full", "fixed", "threshold", "ratio", "quantile". ' | |
'If not "fixed", network_dim and conv_dim will be ignored' | |
), | |
default="fixed", | |
type=str, | |
) | |
parser.add_argument( | |
"--safetensors", | |
help="use safetensors to save locon model", | |
default=False, | |
action="store_true", | |
) | |
parser.add_argument( | |
"--linear_dim", | |
help="network dim for linear layer in fixed mode", | |
default=1, | |
type=int, | |
) | |
parser.add_argument( | |
"--conv_dim", | |
help="network dim for conv layer in fixed mode", | |
default=1, | |
type=int, | |
) | |
parser.add_argument( | |
"--linear_threshold", | |
help="singular value threshold for linear layer in threshold mode", | |
default=0.0, | |
type=float, | |
) | |
parser.add_argument( | |
"--conv_threshold", | |
help="singular value threshold for conv layer in threshold mode", | |
default=0.0, | |
type=float, | |
) | |
parser.add_argument( | |
"--linear_ratio", | |
help="singular ratio for linear layer in ratio mode", | |
default=0.0, | |
type=float, | |
) | |
parser.add_argument( | |
"--conv_ratio", | |
help="singular ratio for conv layer in ratio mode", | |
default=0.0, | |
type=float, | |
) | |
parser.add_argument( | |
"--linear_quantile", | |
help="singular value quantile for linear layer quantile mode", | |
default=1.0, | |
type=float, | |
) | |
parser.add_argument( | |
"--conv_quantile", | |
help="singular value quantile for conv layer quantile mode", | |
default=1.0, | |
type=float, | |
) | |
parser.add_argument( | |
"--use_sparse_bias", | |
help="enable sparse bias", | |
default=False, | |
action="store_true", | |
) | |
parser.add_argument( | |
"--sparsity", help="sparsity for sparse bias", default=0.98, type=float | |
) | |
parser.add_argument( | |
"--disable_cp", | |
help="don't use cp decomposition", | |
default=False, | |
action="store_true", | |
) | |
return parser.parse_args() | |
ARGS = get_args() | |
from lycoris.utils import extract_diff | |
from lycoris.kohya.model_utils import load_models_from_stable_diffusion_checkpoint | |
from lycoris.kohya.sdxl_model_util import load_models_from_sdxl_checkpoint | |
import torch | |
from safetensors.torch import save_file | |
def main(): | |
args = ARGS | |
if args.is_sdxl: | |
base = load_models_from_sdxl_checkpoint(None, args.base_model, args.device) | |
db = load_models_from_sdxl_checkpoint(None, args.db_model, args.device) | |
else: | |
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model) | |
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model) | |
linear_mode_param = { | |
"fixed": args.linear_dim, | |
"threshold": args.linear_threshold, | |
"ratio": args.linear_ratio, | |
"quantile": args.linear_quantile, | |
"full": None, | |
}[args.mode] | |
conv_mode_param = { | |
"fixed": args.conv_dim, | |
"threshold": args.conv_threshold, | |
"ratio": args.conv_ratio, | |
"quantile": args.conv_quantile, | |
"full": None, | |
}[args.mode] | |
if args.is_sdxl: | |
db_tes = [db[0], db[1]] | |
db_unet = db[3] | |
base_tes = [base[0], base[1]] | |
base_unet = base[3] | |
else: | |
db_tes = [db[0]] | |
db_unet = db[2] | |
base_tes = [base[0]] | |
base_unet = base[2] | |
state_dict = extract_diff( | |
base_tes, | |
db_tes, | |
base_unet, | |
db_unet, | |
args.mode, | |
linear_mode_param, | |
conv_mode_param, | |
args.device, | |
args.use_sparse_bias, | |
args.sparsity, | |
not args.disable_cp, | |
) | |
if args.safetensors: | |
save_file(state_dict, args.output_name) | |
else: | |
torch.save(state_dict, args.output_name) | |
if __name__ == "__main__": | |
main() |