ShesterG's picture
Add application file
ceeabec
import cv2
import numpy as np
import os
import pickle
import gzip
from datetime import datetime
from pathlib import Path
import decord
import argparse
import json
import time
from typing import Dict, Optional, Tuple, List, Union, Any
class FaceExtractor:
"""
A class for extracting face regions from videos based on pose and face landmarks.
Creates face frames with only eyes and mouth visible on grey background.
"""
def __init__(self, output_size: Tuple[int, int] = (224, 224),
scale_factor: float = 1.2, grey_background_color: int = 128):
"""
Initialize the FaceExtractor.
Args:
output_size: Size of the output face frames (width, height)
scale_factor: Scale factor for bounding box expansion
grey_background_color: Color value for grey background (0-255)
"""
self.output_size = output_size
self.scale_factor = scale_factor
self.grey_background_color = grey_background_color
# Face landmark indices for eyes and mouth
self.left_eye_indices = [69, 168, 156, 118, 54]
self.right_eye_indices = [168, 299, 347, 336, 301]
self.mouth_indices = [164, 212, 432, 18]
def resize_frame(self, frame: np.ndarray, frame_size: Tuple[int, int]) -> Optional[np.ndarray]:
"""Resize frame to specified size."""
if frame is not None and frame.size > 0:
return cv2.resize(frame, frame_size, interpolation=cv2.INTER_AREA)
else:
return None
def calculate_bounding_box(self, landmarks: List[List[float]], indices: List[int],
image_shape: Tuple[int, int, int]) -> Tuple[int, int, int, int]:
"""Calculate bounding box for specific landmark indices."""
x_coordinates = [landmarks[i][0] for i in indices]
y_coordinates = [landmarks[i][1] for i in indices]
left = min(x_coordinates)
right = max(x_coordinates)
top = min(y_coordinates)
bottom = max(y_coordinates)
return (int(left * image_shape[1]), int(top * image_shape[0]),
int(right * image_shape[1]), int(bottom * image_shape[0]))
def crop_and_paste(self, src: np.ndarray, dst: np.ndarray,
src_box: Tuple[int, int, int, int], dst_origin: Tuple[int, int]):
"""Crop region from source and paste to destination."""
x1, y1, x2, y2 = src_box
dx, dy = dst_origin
crop = src[y1:y2, x1:x2]
crop_height, crop_width = crop.shape[:2]
dst[dy:dy+crop_height, dx:dx+crop_width] = crop
def cues_on_grey_background(self, image: np.ndarray, facial_landmarks: List[List[float]]) -> np.ndarray:
"""
Create face frame with only eyes and mouth visible on grey background.
Args:
image: Input image as numpy array
facial_landmarks: Face landmarks from MediaPipe
Returns:
Face frame with eyes and mouth on grey background
"""
image_shape = image.shape
# Calculate bounding boxes for facial features
left_eye_box = self.calculate_bounding_box(facial_landmarks, self.left_eye_indices, image_shape)
right_eye_box = self.calculate_bounding_box(facial_landmarks, self.right_eye_indices, image_shape)
mouth_box = self.calculate_bounding_box(facial_landmarks, self.mouth_indices, image_shape)
# Calculate the overall bounding box
min_x = min(left_eye_box[0], right_eye_box[0], mouth_box[0])
min_y = min(left_eye_box[1], right_eye_box[1], mouth_box[1])
max_x = max(left_eye_box[2], right_eye_box[2], mouth_box[2])
max_y = max(left_eye_box[3], right_eye_box[3], mouth_box[3])
# Add padding
padding = 10
min_x = max(0, min_x - padding)
min_y = max(0, min_y - padding)
max_x = min(image.shape[1], max_x + padding)
max_y = min(image.shape[0], max_y + padding)
# Make the crop a square by adjusting either width or height
width = max_x - min_x
height = max_y - min_y
side_length = max(width, height)
# Adjust to ensure square
if width < side_length:
extra = side_length - width
min_x = max(0, min_x - extra // 2)
max_x = min(image.shape[1], max_x + extra // 2)
if height < side_length:
extra = side_length - height
min_y = max(0, min_y - extra // 2)
max_y = min(image.shape[0], max_y + extra // 2)
# Create grey background image
grey_background = np.ones((side_length, side_length, 3), dtype=np.uint8) * self.grey_background_color
# Crop and paste facial features onto grey background
self.crop_and_paste(image, grey_background, left_eye_box, (left_eye_box[0]-min_x, left_eye_box[1]-min_y))
self.crop_and_paste(image, grey_background, right_eye_box, (right_eye_box[0]-min_x, right_eye_box[1]-min_y))
self.crop_and_paste(image, grey_background, mouth_box, (mouth_box[0]-min_x, mouth_box[1]-min_y))
return grey_background
def select_face(self, pose_landmarks: List[List[float]], face_landmarks: List[List[List[float]]]) -> List[List[float]]:
"""
Select the face that is closest to the pose nose landmark.
Args:
pose_landmarks: Pose landmarks from MediaPipe
face_landmarks: List of face landmarks from MediaPipe
Returns:
Selected face landmarks
"""
nose_landmark_from_pose = pose_landmarks[0] # Nose from pose
nose_landmarks_from_face = [face_landmarks[i][0] for i in range(len(face_landmarks))]
# Find closest face based on nose landmark
distances = [np.linalg.norm(np.array(nose_landmark_from_pose) - np.array(nose_landmark))
for nose_landmark in nose_landmarks_from_face]
closest_nose_index = np.argmin(distances)
return face_landmarks[closest_nose_index]
def extract_face_frames(self, video_input, landmarks_data: Dict[int, Any]) -> List[np.ndarray]:
"""
Extract face frames from video based on landmarks.
Args:
video_input: Either a path to video file (str) or a decord.VideoReader object
landmarks_data: Dictionary containing pose and face landmarks for each frame
Returns:
List of face frames as numpy arrays
"""
# Handle different input types
if isinstance(video_input, str):
video_path = Path(video_input)
if not video_path.exists():
raise FileNotFoundError(f"Video file not found: {video_input}")
video = decord.VideoReader(str(video_path))
# elif hasattr(video_input, '__len__') and hasattr(video_input, '__getitem__'):
else:
video = video_input
# else:
# raise TypeError("video_input must be either a file path (str) or a VideoReader object")
face_frames = []
prev_face_frame = None
prev_landmarks = None
for i in range(len(video)):
# frame = video[i].asnumpy()
frame = video[i]
if hasattr(video, 'seek'):
video.seek(0)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Get landmarks for this frame
frame_landmarks = landmarks_data.get(i, None)
# Handle missing landmarks
if frame_landmarks is None:
if prev_landmarks is not None:
frame_landmarks = prev_landmarks
else:
# Use blank frame if no landmarks available
face_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
continue
else:
prev_landmarks = frame_landmarks
# Check if pose landmarks exist
if frame_landmarks.get('pose_landmarks') is None:
if prev_face_frame is not None:
face_frames.append(prev_face_frame)
else:
face_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
continue
# Process face if face landmarks exist
if frame_landmarks.get('face_landmarks') is not None:
# Select the face closest to the pose
selected_face = self.select_face(
frame_landmarks['pose_landmarks'][0],
frame_landmarks['face_landmarks']
)
# Create face frame with cues on grey background
face_frame = self.cues_on_grey_background(frame_rgb, selected_face)
face_frame = self.resize_frame(face_frame, self.output_size)
face_frames.append(face_frame)
prev_face_frame = face_frame
elif prev_face_frame is not None:
face_frames.append(prev_face_frame)
else:
# Use blank frame if no face landmarks
face_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
return face_frames
def extract_and_save_face_video(self, video_input, landmarks_data: Dict[int, Any],
output_dir: str, video_name: Optional[str] = None) -> str:
"""
Extract face frames and save as video file.
Args:
video_input: Either a path to video file (str) or a decord.VideoReader object
landmarks_data: Dictionary containing pose and face landmarks for each frame
output_dir: Directory to save the face video
video_name: Name for output video (auto-generated if not provided)
Returns:
Path to the saved face video
"""
# Handle video input and get FPS
if isinstance(video_input, str):
video_path = Path(video_input)
if not video_path.exists():
raise FileNotFoundError(f"Video file not found: {video_input}")
video = decord.VideoReader(str(video_path))
if video_name is None:
video_name = video_path.stem
# elif hasattr(video_input, '__len__') and hasattr(video_input, '__getitem__'):
else:
video = video_input
if video_name is None:
video_name = "video"
# else:
# raise TypeError("video_input must be either a file path (str) or a VideoReader object")
fps = video.get_avg_fps() if hasattr(video, 'get_avg_fps') else 30.0
# Create output directory
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Define output path
face_video_path = output_path / f"{video_name}_face.mp4"
# Remove existing file
if face_video_path.exists():
face_video_path.unlink()
# Create video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(str(face_video_path), fourcc, fps, self.output_size)
try:
# Extract face frames
face_frames = self.extract_face_frames(video, landmarks_data)
# Write frames to video file
for frame in face_frames:
writer.write(frame)
finally:
# Clean up
writer.release()
del writer
return str(face_video_path)
# Convenience function for backward compatibility
def extract_face_frames(video_input, landmarks_data: Dict[int, Any],
output_size: Tuple[int, int] = (224, 224)) -> List[np.ndarray]:
"""
Convenience function to extract face frames from video.
Args:
video_input: Either a path to video file (str) or a decord.VideoReader object
landmarks_data: Dictionary containing pose and face landmarks for each frame
output_size: Size of the output face frames (width, height)
Returns:
List of face frames as numpy arrays
"""
extractor = FaceExtractor(output_size=output_size)
return extractor.extract_face_frames(video_input, landmarks_data)
def video_holistic(video_file: str, face_path: str, problem_file_path: str, pose_path: str):
"""
Original function for backward compatibility with command-line usage.
"""
try:
video = decord.VideoReader(video_file)
fps = video.get_avg_fps()
video_name = Path(video_file).stem
clip_face_path = Path(face_path) / f"{video_name}_face.mp4"
landmark_json_path = Path(pose_path) / f"{video_name}_pose.json"
# Load landmarks
with open(landmark_json_path, 'r') as rd:
landmarks_data = json.load(rd)
# Convert string keys to integers
landmarks_data = {int(k): v for k, v in landmarks_data.items()}
# Extract face video
extractor = FaceExtractor()
extractor.extract_and_save_face_video(video, landmarks_data, face_path, video_name)
except Exception as e:
print(f"Error processing {video_file}: {e}")
with open(problem_file_path, "a") as p:
p.write(video_file + "\n")
# Utility functions for batch processing
def load_file(filename: str):
"""Load a pickled and gzipped file."""
with gzip.open(filename, "rb") as f:
return pickle.load(f)
def is_string_in_file(file_path: str, target_string: str) -> bool:
"""Check if a string exists in a file."""
try:
with Path(file_path).open("r") as f:
for line in f:
if target_string in line:
return True
return False
except Exception as e:
print(f"Error: {e}")
return False
def main():
"""Main function for command-line usage."""
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, required=True,
help='index of the sub_list to work with')
parser.add_argument('--batch_size', type=int, required=True,
help='batch size')
parser.add_argument('--time_limit', type=int, required=True,
help='time limit')
parser.add_argument('--files_list', type=str, required=True,
help='files list')
parser.add_argument('--problem_file_path', type=str, required=True,
help='problem file path')
parser.add_argument('--pose_path', type=str, required=True,
help='pose path')
parser.add_argument('--face_path', type=str, required=True,
help='face path')
args = parser.parse_args()
start_time = time.time()
# Load files list
fixed_list = load_file(args.files_list)
# Create problem file if it doesn't exist
if not os.path.exists(args.problem_file_path):
with open(args.problem_file_path, "w") as f:
f.write("")
# Process videos in batches
video_batches = [fixed_list[i:i + args.batch_size] for i in range(0, len(fixed_list), args.batch_size)]
for video_file in video_batches[args.index]:
current_time = time.time()
if current_time - start_time > args.time_limit:
print("Time limit reached. Stopping execution.")
break
video_name = Path(video_file).stem
clip_face_path = Path(args.face_path) / f"{video_name}_face.mp4"
if clip_face_path.exists():
print(f"Skipping {video_file} - output already exists")
continue
elif is_string_in_file(args.problem_file_path, video_file):
print(f"Skipping {video_file} - found in problem file")
continue
else:
try:
print(f"Processing {video_file}")
video_holistic(video_file, args.face_path, args.problem_file_path, args.pose_path)
print(f"Successfully processed {video_file}")
except Exception as e:
print(f"Error processing {video_file}: {e}")
with open(args.problem_file_path, "a") as p:
p.write(video_file + "\n")
if __name__ == "__main__":
main()