Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
# References: | |
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py | |
import logging | |
import os | |
import warnings | |
import torch | |
from torch import nn, Tensor | |
logger = logging.getLogger("dinov2") | |
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None | |
try: | |
if XFORMERS_ENABLED: | |
from xformers.ops import memory_efficient_attention, unbind | |
XFORMERS_AVAILABLE = True | |
warnings.warn("xFormers is available (Attention)") | |
else: | |
warnings.warn("xFormers is disabled (Attention)") | |
raise ImportError | |
except ImportError: | |
XFORMERS_AVAILABLE = False | |
warnings.warn("xFormers is not available (Attention)") | |
try: | |
from typing import Optional | |
from typing import Union | |
FloatOrNone = Union[float, None] | |
except ImportError: | |
FloatOrNone = float | None | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = attn_drop | |
self.proj = nn.Linear(dim, dim, bias=proj_bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def init_weights( | |
self, init_attn_std: FloatOrNone = None, init_proj_std: FloatOrNone = None, factor: float = 1.0 | |
) -> None: | |
init_attn_std = init_attn_std or (self.dim**-0.5) | |
init_proj_std = init_proj_std or init_attn_std * factor | |
nn.init.normal_(self.qkv.weight, std=init_attn_std) | |
nn.init.normal_(self.proj.weight, std=init_proj_std) | |
if self.qkv.bias is not None: | |
nn.init.zeros_(self.qkv.bias) | |
if self.proj.bias is not None: | |
nn.init.zeros_(self.proj.bias) | |
def forward(self, x: Tensor, is_causal: bool = False) -> Tensor: | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
q, k, v = torch.unbind(qkv, 2) | |
q, k, v = [t.transpose(1, 2) for t in [q, k, v]] | |
x = nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=None, dropout_p=self.attn_drop if self.training else 0, is_causal=is_causal | |
) | |
x = x.transpose(1, 2).contiguous().view(B, N, C) | |
x = self.proj_drop(self.proj(x)) | |
return x | |
class MemEffAttention(Attention): | |
def forward(self, x: Tensor, attn_bias=None) -> Tensor: | |
if not XFORMERS_AVAILABLE: | |
if attn_bias is not None: | |
raise AssertionError("xFormers is required for using nested tensors") | |
return super().forward(x) | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
q, k, v = unbind(qkv, 2) | |
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) | |
x = x.reshape([B, N, C]) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |