ShesterG's picture
Add application file
ceeabec
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
import logging
import os
import warnings
import torch
from torch import nn, Tensor
logger = logging.getLogger("dinov2")
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
try:
if XFORMERS_ENABLED:
from xformers.ops import memory_efficient_attention, unbind
XFORMERS_AVAILABLE = True
warnings.warn("xFormers is available (Attention)")
else:
warnings.warn("xFormers is disabled (Attention)")
raise ImportError
except ImportError:
XFORMERS_AVAILABLE = False
warnings.warn("xFormers is not available (Attention)")
try:
from typing import Optional
from typing import Union
FloatOrNone = Union[float, None]
except ImportError:
FloatOrNone = float | None
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
proj_bias: bool = True,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
super().__init__()
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = attn_drop
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
def init_weights(
self, init_attn_std: FloatOrNone = None, init_proj_std: FloatOrNone = None, factor: float = 1.0
) -> None:
init_attn_std = init_attn_std or (self.dim**-0.5)
init_proj_std = init_proj_std or init_attn_std * factor
nn.init.normal_(self.qkv.weight, std=init_attn_std)
nn.init.normal_(self.proj.weight, std=init_proj_std)
if self.qkv.bias is not None:
nn.init.zeros_(self.qkv.bias)
if self.proj.bias is not None:
nn.init.zeros_(self.proj.bias)
def forward(self, x: Tensor, is_causal: bool = False) -> Tensor:
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
q, k, v = torch.unbind(qkv, 2)
q, k, v = [t.transpose(1, 2) for t in [q, k, v]]
x = nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=self.attn_drop if self.training else 0, is_causal=is_causal
)
x = x.transpose(1, 2).contiguous().view(B, N, C)
x = self.proj_drop(self.proj(x))
return x
class MemEffAttention(Attention):
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
if not XFORMERS_AVAILABLE:
if attn_bias is not None:
raise AssertionError("xFormers is required for using nested tensors")
return super().forward(x)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
q, k, v = unbind(qkv, 2)
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
x = x.reshape([B, N, C])
x = self.proj(x)
x = self.proj_drop(x)
return x