ssandy_agents / advanced_tool_agent.py
Sheshank Joshi
reasoning agent
9fced79
import os
from typing import List, Dict, Any, Optional, Type, Callable
from datetime import datetime, timedelta
import heapq
import json
import torch
from langchain_core.tools import BaseTool
from langchain_core.language_models import BaseChatModel
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage, ToolMessage
from langchain_core.vectorstores import VectorStore
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain.tools.retriever import create_retriever_tool
from langchain_huggingface import HuggingFaceEmbeddings
from langgraph.graph import StateGraph, END
from langgraph.prebuilt import (
ToolNode,
ToolInvocation,
agent_executor,
create_function_calling_executor,
AgentState,
MessageGraph
)
from langgraph.prebuilt.tool_executor import ToolExecutor, extract_tool_invocations
from langgraph.prebuilt.tool_nodes import get_default_tool_node_parser
class AdvancedToolAgent:
"""
An advanced agent with robust tool-calling capabilities using LangGraph.
Features enhanced memory management, context enrichment, and tool execution tracking.
"""
def __init__(
self,
embedding_model: HuggingFaceEmbeddings,
vector_store: VectorStore,
llm: BaseChatModel,
tools: Optional[List[BaseTool]] = None,
max_iterations: int = 10,
memory_threshold: float = 0.7
):
"""
Initialize the agent with required components.
Args:
embedding_model: Model for embedding text
vector_store: Storage for agent memory
llm: Language model for agent reasoning
tools: List of tools accessible to the agent
max_iterations: Maximum number of tool calling iterations
memory_threshold: Threshold for deciding when to include memory context (0-1)
"""
self.embedding_model = embedding_model
self.vector_store = vector_store
self.llm = llm
self.tools = tools or []
self.max_iterations = max_iterations
self.memory_threshold = memory_threshold
# Setup retriever for memory access
self.retriever = vector_store.as_retriever(
search_kwargs={"k": 3, "score_threshold": 0.75}
)
# Create memory retrieval tool
self.memory_tool = create_retriever_tool(
retriever=self.retriever,
name="memory_search",
description="Search the agent's memory for relevant past interactions and knowledge."
)
# Add memory tool to the agent's toolset
self.all_tools = self.tools + [self.memory_tool]
# Setup tool executor
self.tool_executor = ToolExecutor(self.all_tools)
# Build the agent's execution graph
self.agent_executor = self._build_agent_graph()
print(f"AdvancedToolAgent initialized with {len(self.all_tools)} tools")
def __call__(self, question: str) -> str:
"""
Process a question using the agent.
Args:
question: The user query to respond to
Returns:
The agent's response
"""
print(f"Agent received question: {question[:50]}..." if len(question) > 50 else question)
# Enrich context with relevant memory
enriched_input = self._enrich_context(question)
# Create initial state
initial_state = {
"messages": [HumanMessage(content=enriched_input)],
"tools": self.all_tools,
"tool_calls": [],
}
# Execute agent graph
final_state = self.agent_executor.invoke(initial_state)
# Extract the final response
final_message = final_state["messages"][-1]
answer = final_message.content
# Store this interaction in memory
self._store_interaction(question, answer, final_state.get("tool_calls", []))
# Periodically manage memory
self._periodic_memory_management()
print(f"Agent returning answer: {answer[:50]}..." if len(answer) > 50 else answer)
return answer
def _build_agent_graph(self):
"""Build the LangGraph execution graph with enhanced tool calling"""
# Function for the agent to process messages and call tools
def agent_node(state: AgentState) -> AgentState:
"""Process messages and decide on next action"""
messages = state["messages"]
# Add system instructions with tool details
if not any(isinstance(msg, SystemMessage) for msg in messages):
system_prompt = self._create_system_prompt()
messages = [SystemMessage(content=system_prompt)] + messages
# Get response from LLM
response = self.llm.invoke(messages)
# Extract any tool calls
tool_calls = extract_tool_invocations(
response,
self.all_tools,
strict_mode=False,
)
# Update state
new_state = state.copy()
new_state["messages"] = messages + [response]
new_state["tool_calls"] = tool_calls
return new_state
# Function for executing tools
def tool_node(state: AgentState) -> AgentState:
"""Execute tools and add results to messages"""
# Get the tool calls from the state
tool_calls = state["tool_calls"]
# Execute each tool call
tool_results = []
for tool_call in tool_calls:
try:
# Execute the tool
result = self.tool_executor.invoke(tool_call)
# Create a tool message with the result
tool_msg = ToolMessage(
content=str(result),
tool_call_id=tool_call.id,
name=tool_call.name,
)
tool_results.append(tool_msg)
# Track tool usage for memory
self._track_tool_usage(tool_call.name, tool_call.args, result)
except Exception as e:
# Handle tool execution errors
error_msg = f"Error executing tool {tool_call.name}: {str(e)}"
tool_msg = ToolMessage(
content=error_msg,
tool_call_id=tool_call.id,
name=tool_call.name,
)
tool_results.append(tool_msg)
# Update state with tool results
new_state = state.copy()
new_state["messages"] = state["messages"] + tool_results
new_state["tool_calls"] = []
return new_state
# Create the graph
graph = StateGraph(AgentState)
# Add nodes
graph.add_node("agent", agent_node)
graph.add_node("tools", tool_node)
# Set the entry point
graph.set_entry_point("agent")
# Add edges
graph.add_conditional_edges(
"agent",
lambda state: "tools" if state["tool_calls"] else END,
{
"tools": "tools",
END: END,
}
)
graph.add_edge("tools", "agent")
# Set max iterations to prevent infinite loops
return graph.compile(max_iterations=self.max_iterations)
def _create_system_prompt(self) -> str:
"""Create a system prompt with tool instructions"""
tool_descriptions = "\n\n".join([
f"Tool {i+1}: {tool.name}\n"
f"Description: {tool.description}\n"
f"Args: {json.dumps(tool.args, indent=2) if hasattr(tool, 'args') else 'No arguments required'}"
for i, tool in enumerate(self.all_tools)
])
return f"""You are an advanced AI assistant with access to various tools.
When a user asks a question, use your knowledge and the available tools to provide
accurate and helpful responses.
AVAILABLE TOOLS:
{tool_descriptions}
INSTRUCTIONS FOR TOOL USAGE:
1. When you need information that requires a tool, call the appropriate tool.
2. Format tool calls clearly by specifying the tool name and inputs.
3. Wait for tool results before providing final answers.
4. Use tools only when necessary - if you can answer directly, do so.
5. If a tool fails, try a different approach or tool.
6. Always explain your reasoning step by step.
Remember to be helpful, accurate, and concise in your responses.
"""
def _enrich_context(self, query: str) -> str:
"""Enrich the input query with relevant context from memory"""
# Search for similar content
similar_docs = self.vector_store.similarity_search(
query,
k=2, # Limit to 2 most relevant documents
fetch_k=5 # Consider 5 candidates
)
# Only use memory if relevance is high enough
if not similar_docs or len(similar_docs) == 0:
return query
# Build enhanced context
context_additions = []
for doc in similar_docs:
content = doc.page_content
# Extract different types of memory
if "Question:" in content and "Final answer:" in content:
# Q&A memory
q = content.split("Question:")[1].split("Final answer:")[0].strip()
a = content.split("Final answer:")[1].split("Timestamp:", 1)[0].strip()
# Only add if it's not too similar to current question
if not self._is_similar_question(query, q, threshold=0.85):
context_additions.append(f"Related Q: {q}\nRelated A: {a}")
elif "Tool Knowledge" in content:
# Tool usage memory
tool_name = content.split("Tool:")[1].split("Query:")[0].strip()
tool_result = content.split("Result:")[1].split("Timestamp:")[0].strip()
context_additions.append(
f"From prior tool use ({tool_name}): {tool_result[:200]}"
)
# Only add context if we have relevant information
if context_additions:
return (
"Consider this relevant information first:\n\n" +
"\n\n".join(context_additions[:2]) + # Limit to 2 pieces of context
"\n\nNow answering this question: " + query
)
else:
return query
def _is_similar_question(self, query1: str, query2: str, threshold: float = 0.8) -> bool:
"""Check if two questions are semantically similar using embeddings"""
# Get embeddings for both queries
if hasattr(self.embedding_model, 'embed_query'):
emb1 = self.embedding_model.embed_query(query1)
emb2 = self.embedding_model.embed_query(query2)
# Calculate cosine similarity
similarity = self._cosine_similarity(emb1, emb2)
return similarity > threshold
return False
@staticmethod
def _cosine_similarity(v1, v2):
"""Calculate cosine similarity between vectors"""
dot_product = sum(x * y for x, y in zip(v1, v2))
magnitude1 = sum(x * x for x in v1) ** 0.5
magnitude2 = sum(x * x for x in v2) ** 0.5
if magnitude1 * magnitude2 == 0:
return 0
return dot_product / (magnitude1 * magnitude2)
def _store_interaction(self, question: str, answer: str, tool_calls: List[dict]) -> None:
"""Store the interaction in vector memory"""
timestamp = datetime.now().isoformat()
# Format tools used
tools_used = []
for tool_call in tool_calls:
if isinstance(tool_call, dict) and 'name' in tool_call:
tools_used.append(tool_call['name'])
elif hasattr(tool_call, 'name'):
tools_used.append(tool_call.name)
tools_str = ", ".join(tools_used) if tools_used else "None"
# Create content
content = (
f"Question: {question}\n"
f"Tools Used: {tools_str}\n"
f"Final answer: {answer}\n"
f"Timestamp: {timestamp}"
)
# Create document with metadata
doc = Document(
page_content=content,
metadata={
"question": question,
"timestamp": timestamp,
"type": "qa_pair",
"tools_used": tools_str
}
)
# Add to vector store
self.vector_store.add_documents([doc])
def _track_tool_usage(self, tool_name: str, tool_input: Any, tool_output: Any) -> None:
"""Track tool usage for future reference"""
timestamp = datetime.now().isoformat()
# Format the content
content = (
f"Tool Knowledge\n"
f"Tool: {tool_name}\n"
f"Query: {str(tool_input)}\n"
f"Result: {str(tool_output)}\n"
f"Timestamp: {timestamp}"
)
# Create document with metadata
doc = Document(
page_content=content,
metadata={
"type": "tool_knowledge",
"tool": tool_name,
"timestamp": timestamp
}
)
# Add to vector store
self.vector_store.add_documents([doc])
def _periodic_memory_management(self,
check_frequency: int = 10,
max_documents: int = 1000,
max_age_days: int = 30) -> None:
"""Periodically manage memory to prevent unbounded growth"""
# Simple probabilistic check to avoid running this too often
if hash(datetime.now().isoformat()) % check_frequency != 0:
return
self.manage_memory(max_documents, max_age_days)
def manage_memory(self, max_documents: int = 1000, max_age_days: int = 30) -> None:
"""
Manage memory by pruning old or less useful entries from the vector store.
Args:
max_documents: Maximum number of documents to keep
max_age_days: Remove documents older than this many days
"""
print(f"Starting memory management...")
# Get all documents from the vector store
try:
# For vector stores that have a get_all_documents method
if hasattr(self.vector_store, "get_all_documents"):
all_docs = self.vector_store.get_all_documents()
all_ids = [doc.metadata.get("id", i) for i, doc in enumerate(all_docs)]
# For other vector store implementations
else:
print("Warning: Vector store doesn't expose required attributes for memory management")
return
except Exception as e:
print(f"Error accessing vector store documents: {e}")
return
if not all_docs:
print("No documents found in vector store")
return
print(f"Retrieved {len(all_docs)} documents for scoring")
# Score each document based on recency, importance and relevance
scored_docs = []
cutoff_date = datetime.now() - timedelta(days=max_age_days)
for i, doc in enumerate(all_docs):
doc_id = all_ids[i] if i < len(all_ids) else i
# Extract timestamp from content or metadata
timestamp = None
if hasattr(doc, "metadata") and doc.metadata and "timestamp" in doc.metadata:
try:
timestamp = datetime.fromisoformat(doc.metadata["timestamp"])
except (ValueError, TypeError):
pass
# If no timestamp in metadata, try to extract from content
if not timestamp and hasattr(doc, "page_content") and "Timestamp:" in doc.page_content:
try:
timestamp_str = doc.page_content.split("Timestamp:")[-1].strip().split('\n')[0]
timestamp = datetime.fromisoformat(timestamp_str)
except (ValueError, TypeError):
timestamp = datetime.now() - timedelta(days=max_age_days+1)
# If still no timestamp, use a default
if not timestamp:
timestamp = datetime.now() - timedelta(days=max_age_days+1)
# Calculate age score (newer is better)
age_factor = max(0.0, min(1.0, (timestamp - cutoff_date).total_seconds() /
(datetime.now() - cutoff_date).total_seconds()))
# Calculate importance score based on document type and access frequency
importance_factor = 1.0
# Tool knowledge is more valuable
if hasattr(doc, "metadata") and doc.metadata and doc.metadata.get("type") == "tool_knowledge":
importance_factor += 0.5
# If document has been accessed often, increase importance
if hasattr(doc, "metadata") and doc.metadata and "access_count" in doc.metadata:
importance_factor += min(1.0, doc.metadata["access_count"] / 10)
# If document contains references to complex tools, prioritize it
if hasattr(doc, "page_content"):
complex_tools = ["web_search", "python_repl", "analyze_image", "arxiv_search"]
if any(tool in doc.page_content for tool in complex_tools):
importance_factor += 0.3
# Create combined score (higher = more valuable to keep)
total_score = (0.6 * age_factor) + (0.4 * importance_factor)
# Add to priority queue (negative for max-heap behavior)
heapq.heappush(scored_docs, (-total_score, i, doc))
# Select top documents to keep
docs_to_keep = []
for _ in range(min(max_documents, len(scored_docs))):
if scored_docs:
_, _, doc = heapq.heappop(scored_docs)
docs_to_keep.append(doc)
# Only rebuild if we're actually pruning some documents
if len(docs_to_keep) < len(all_docs):
print(f"Memory management: Keeping {len(docs_to_keep)} documents out of {len(all_docs)}")
# Create a new vector store with the same type as the current one
vector_store_type = type(self.vector_store)
# Different approaches based on vector store type
if hasattr(vector_store_type, "from_documents"):
# Most langchain vector stores support this method
new_vector_store = vector_store_type.from_documents(
docs_to_keep,
embedding=self.embedding_model
)
self.vector_store = new_vector_store
print(f"Vector store rebuilt with {len(docs_to_keep)} documents")
elif hasattr(vector_store_type, "from_texts"):
# For vector stores that use from_texts
texts = [doc.page_content for doc in docs_to_keep]
metadatas = [doc.metadata if hasattr(doc, "metadata") else {} for doc in docs_to_keep]
new_vector_store = vector_store_type.from_texts(
texts=texts,
embedding=self.embedding_model,
metadatas=metadatas
)
self.vector_store = new_vector_store
print(f"Vector store rebuilt with {len(docs_to_keep)} documents")
else:
print("Warning: Could not determine how to rebuild the vector store")
print(f"Vector store type: {vector_store_type.__name__}")
# Example usage
if __name__ == "__main__":
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_groq import ChatGroq
from basic_tools import multiply, add, subtract, divide, wiki_search, web_search
# Initialize embeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2",
model_kwargs={"device": "cuda" if torch.cuda.is_available() else "cpu"}
)
# Initialize vector store
vector_store = Chroma(
embedding_function=embeddings,
collection_name="advanced_agent_memory"
)
# Initialize LLM
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
# Define tools
tools = [multiply, add, subtract, divide, wiki_search, web_search]
# Create agent
agent = AdvancedToolAgent(
embedding_model=embeddings,
vector_store=vector_store,
llm=llm,
tools=tools
)
# Test the agent
response = agent("What is the population of France multiplied by 2?")
print(f"Response: {response}")