File size: 1,920 Bytes
9fced79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace, HuggingFaceEmbeddings
import torch
import os
from langchain_openai import ChatOpenAI
from langchain_groq import ChatGroq
from langchain.chat_models.base import BaseChatModel
from langchain_chroma import Chroma


def get_llm(provider: str = "groq") -> BaseChatModel:
       # Load environment variables from .env file
    if provider == "groq":
        # Groq https://console.groq.com/docs/models
        # optional : qwen-qwq-32b gemma2-9b-it
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    elif provider == "huggingface":
        # TODO: Add huggingface endpoint
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                model="Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    elif provider == "openai_local":
        from langchain_openai import ChatOpenAI
        llm = ChatOpenAI(
            base_url="http://localhost:11432/v1",  # default LM Studio endpoint
            api_key="not-used",  # required by interface but ignored #type: ignore
            # model="mistral-nemo-instruct-2407",
            model="mistral-nemo-instruct-2407",
            temperature=0.2
        )
    elif provider == "openai":
        from langchain_openai import ChatOpenAI
        llm = ChatOpenAI(
            model="gpt-4o",
            temperature=0.2,
        )
    else:
        raise ValueError(
            "Invalid provider. Choose 'groq' or 'huggingface'.")
    return llm


embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-mpnet-base-v2",
    model_kwargs={"device": "gpu" if torch.cuda.is_available() else "cpu",
                  "token": os.getenv("HF_TOKEN")},
    show_progress=True,
)

# Initialize empty Chroma vector store
vector_store = Chroma(
    embedding_function=embeddings,
    collection_name="agent_memory"
)