Spaces:
Runtime error
Runtime error
File size: 30,884 Bytes
9fced79 541377c 554ef85 541377c 9fced79 541377c 9fced79 541377c 554ef85 541377c 9fced79 541377c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
from youtube_transcript_api.formatters import TextFormatter
from youtube_transcript_api import YouTubeTranscriptApi
import requests
from typing import Dict, List, Optional, Any, Union
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
# from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.utilities import RequestsWrapper
# from supabase.client import Client, create_client
# from langchain.tools.requests.toolkit import RequestsToolkit # Added for RequestsToolKit
from langchain_community.tools import RequestsPostTool, RequestsGetTool
load_dotenv()
requests_wrapper = RequestsWrapper()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 5 results.
Args:
query: The search query. Be specific with search terms including full names, dates, and relevant keywords.
"""
if not query or query.strip() == "":
return "Error: Please provide a valid search query with specific terms."
try:
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
if not search_docs:
return f"No Wikipedia results found for '{query}'. Consider refining your search terms."
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"Error searching Wikipedia: {str(e)}. Please try a different query."
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(input=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
# @tool
# def requests_get(url: str, params: dict = {}) -> str:
# """Perform an HTTP GET request using LangChain's RequestsToolKit.
# Args:
# url: The URL to send the GET request to.
# params: Optional dictionary of query parameters.
# Returns:
# The response content as text.
# """
# toolkit = RequestsGetTool(requests_wrapper=requests_wrapper)
# # The get method is expected to return a response-like object.
# response = toolkit.run(url, params=params)
# return response.text
# Adding request toolkits
requests_get = RequestsGetTool(requests_wrapper=requests_wrapper, allow_dangerous_requests=True)
requests_post = RequestsPostTool(requests_wrapper=requests_wrapper, allow_dangerous_requests=True)
# @tool
# def requests_post(url: str, data: dict = {}, json: dict = {}, headers: dict = {}) -> str:
# """Perform an HTTP POST request using LangChain's RequestsToolKit.
# Args:
# url: The URL to send the POST request to.
# data: Optional dictionary of form data.
# json: Optional dictionary to send as JSON.
# headers: Optional dictionary of HTTP headers.
# Returns:
# The response content as text.
# """
# toolkit = RequestsPostTool(requests_wrapper=requests_wrapper)
# response = toolkit.run(url, data=data, json=json, headers=headers)
# return response.text
@tool
def date_filter(content: str, start_year: int, end_year: int) -> str:
"""Filter content based on date range and extract relevant information.
Args:
content: The text content to filter
start_year: Starting year (inclusive)
end_year: Ending year (inclusive)
"""
if not content or not isinstance(content, str):
return "Error: No content provided for filtering."
try:
# Convert years to strings for matching
years = [str(year) for year in range(start_year, end_year + 1)]
# Split content into paragraphs
paragraphs = content.split("\n")
# Filter paragraphs containing any year in the range
filtered_paragraphs = []
for paragraph in paragraphs:
if any(f" {year}" in paragraph or f"({year})" in paragraph or f"[{year}]" in paragraph for year in years):
filtered_paragraphs.append(paragraph)
if not filtered_paragraphs:
return f"No content found specifically mentioning years between {start_year} and {end_year}."
return "\n\n".join(filtered_paragraphs)
except Exception as e:
return f"Error filtering by date range: {str(e)}"
import re
@tool
def count_items(content: str, pattern: str, context_words: int = 5) -> str:
"""Count items matching a pattern in content and extract contextual information.
Args:
content: The text to analyze
pattern: The pattern to search for (e.g. "album", "publication")
context_words: Number of words to include for context around matches
"""
if not content or not pattern:
return "Error: Both content and pattern must be provided."
try:
# Find all occurrences of the pattern
matches = re.finditer(r'(?i)\b\w*' + re.escape(pattern) + r'\w*\b', content)
# Extract context around matches
contexts = []
count = 0
for match in matches:
count += 1
start, end = match.span()
# Get text before and after the match
text_before = content[max(0, start-100):start]
text_after = content[end:min(len(content), end+100)]
# Create contextual excerpt
context = f"...{text_before}{match.group(0)}{text_after}..."
contexts.append(context)
if count == 0:
return f"No items matching '{pattern}' found in the content."
result = f"Found {count} occurrences of '{pattern}'. Contexts:\n\n"
result += "\n---\n".join(contexts[:10]) # Limit to first 10 for brevity
return result
except Exception as e:
return f"Error counting items: {str(e)}"
@tool
def translate_text(text: str, target_language: str) -> str:
"""Translate text to the specified language using a simple translation API.
Args:
text: Text to translate
target_language: Target language (e.g., "Spanish", "French", "German")
"""
if not text:
return "Error: No text provided for translation."
try:
# Using LibreTranslate API (open-source translation)
API_URL = "https://translate.argosopentech.com/translate"
# Map common language names to language codes
language_map = {
"english": "en",
"spanish": "es",
"french": "fr",
"german": "de",
"italian": "it",
"portuguese": "pt",
"russian": "ru",
"japanese": "ja",
"chinese": "zh",
"arabic": "ar",
"hindi": "hi",
"korean": "ko"
}
# Get language code
target_code = language_map.get(target_language.lower())
if not target_code:
return f"Error: Unsupported language '{target_language}'. Supported languages: {', '.join(language_map.keys())}."
# Prepare request
payload = {
"q": text[:500], # Limit text length to avoid API issues
"source": "auto",
"target": target_code
}
response = requests.post(API_URL, json=payload)
if response.status_code == 200:
translation = response.json().get("translatedText", "")
return f"Original: {text[:100]}{'...' if len(text) > 100 else ''}\n\nTranslation ({target_language}): {translation}"
else:
return f"Translation API error: {response.status_code} - {response.text}"
except Exception as e:
return f"Error translating text: {str(e)}"
@tool
def step_by_step_reasoning(problem: str, steps: int = 3) -> str:
"""Break down a complex problem into steps for clearer reasoning.
Args:
problem: The problem statement or question to analyze
steps: Number of reasoning steps (default: 3)
"""
if not problem:
return "Error: No problem provided for analysis."
try:
# Structure for breaking down any problem
result = f"Breaking down: {problem}\n\n"
# Generic reasoning steps that work for many problems
reasoning_steps = [
"Identify the key information and requirements in the problem",
"Determine what knowledge or method is needed to solve it",
"Apply relevant formulas, data, or logical steps",
"Verify the solution against the original requirements",
"Consider alternative approaches or edge cases"
]
# Use only the requested number of steps
steps_to_use = min(steps, len(reasoning_steps))
for i in range(steps_to_use):
result += f"Step {i+1}: {reasoning_steps[i]}\n"
result += f"This step involves analyzing {problem} by "
if i == 0:
# First step focuses on understanding the problem
keywords = re.findall(r'\b\w{5,}\b', problem)
key_concepts = [word for word in keywords if len(word) > 4][:3]
if key_concepts:
result += f"identifying key concepts like {', '.join(key_concepts)}. "
# Identify question type
if "how many" in problem.lower():
result += "This is a counting or quantification problem. "
elif "when" in problem.lower():
result += "This is a timing or chronological problem. "
elif "where" in problem.lower():
result += "This is a location or spatial problem. "
elif "who" in problem.lower():
result += "This is a person or entity identification problem. "
elif "why" in problem.lower():
result += "This is a causation or reasoning problem. "
result += "We need to extract specific details from the problem statement.\n\n"
elif i == 1:
# Second step focuses on approach
if "between" in problem.lower() and re.search(r'\d{4}', problem):
result += "using date filtering to focus on the specific time period. "
result += "We need to identify relevant dates and associated events/items.\n\n"
elif any(word in problem.lower() for word in ["album", "song", "music", "artist", "band"]):
result += "examining discography information and music-related details. "
result += "We should focus on releases, titles, and years.\n\n"
elif any(word in problem.lower() for word in ["calculate", "compute", "sum", "average", "total"]):
result += "applying mathematical operations to derive a numeric result. "
result += "We need to identify the values and operations required.\n\n"
else:
result += "gathering relevant factual information and organizing it logically. "
result += "We should separate facts from assumptions.\n\n"
elif i == 2:
# Third step focuses on solution path
result += "determining the specific steps to reach a solution. "
result += "This may involve counting items, applying formulas, or comparing data.\n\n"
elif i == 3:
# Fourth step focuses on verification
result += "checking our answer against the original question requirements. "
result += "We should verify that we've fully addressed all parts of the question.\n\n"
else:
# Fifth step focuses on alternatives
result += "considering other approaches or edge cases we might have missed. "
result += "This ensures our answer is robust and comprehensive.\n\n"
result += "\nThis structured approach helps organize thinking and ensures a thorough analysis."
return result
except Exception as e:
return f"Error performing step-by-step reasoning: {str(e)}"
@tool
def analyze_content(content: str, analysis_type: str) -> str:
"""Analyze content for specific information based on analysis type.
Args:
content: Text content to analyze
analysis_type: Type of analysis to perform ('dates', 'names', 'numbers', 'events')
"""
if not content:
return "Error: No content provided for analysis."
analysis_type = analysis_type.lower()
try:
if analysis_type == 'dates':
# Extract dates in various formats
date_patterns = [
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', # DD/MM/YYYY or MM/DD/YYYY
r'\b\d{1,2}\s(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s\d{2,4}\b', # DD Month YYYY
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s\d{1,2}(?:st|nd|rd|th)?,\s\d{2,4}\b', # Month DD, YYYY
r'\b\d{4}\b' # YYYY (years)
]
results = []
for pattern in date_patterns:
matches = re.findall(pattern, content, re.IGNORECASE)
results.extend(matches)
return f"Found {len(results)} date references:\n\n" + "\n".join(results)
elif analysis_type == 'names':
# Basic name extraction (this is simplified, real NER would be better)
name_pattern = r'\b[A-Z][a-z]+\s[A-Z][a-z]+\b'
names = re.findall(name_pattern, content)
return f"Found {len(names)} potential names:\n\n" + "\n".join(names)
elif analysis_type == 'numbers':
# Extract numbers and their context
number_pattern = r'\b\d+(?:,\d+)*(?:\.\d+)?\b'
numbers = re.findall(number_pattern, content)
# Get context for each number
contexts = []
for number in numbers:
index = content.find(number)
start = max(0, index - 50)
end = min(len(content), index + len(number) + 50)
context = content[start:end].replace('\n', ' ').strip()
contexts.append(f"{number}: \"{context}\"")
return f"Found {len(numbers)} numbers with context:\n\n" + "\n".join(contexts[:20]) # Limit to 20
elif analysis_type == 'events':
# Look for event indicators
event_patterns = [
r'\b(?:occurred|happened|took place|event|ceremony|concert|release|published|awarded|presented)\b',
r'\b(?:in|on|during|at)\s\d{4}\b'
]
events = []
for pattern in event_patterns:
for match in re.finditer(pattern, content, re.IGNORECASE):
start = max(0, match.start() - 100)
end = min(len(content), match.end() + 100)
context = content[start:end].replace('\n', ' ').strip()
events.append(context)
return f"Found {len(events)} potential events:\n\n" + "\n\n".join(events[:15]) # Limit to 15
else:
return f"Error: Unsupported analysis type '{analysis_type}'. Use 'dates', 'names', 'numbers', or 'events'."
except Exception as e:
return f"Error during content analysis: {str(e)}"
@tool
def youtube_transcript(url: str, summarize: bool = True) -> str:
"""Extract transcript from YouTube video and optionally summarize it.
Args:
url: YouTube video URL or video ID
summarize: Whether to summarize the transcript (default: True)
"""
try:
# Extract video ID from URL
video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', url)
if video_id_match:
video_id = video_id_match.group(1)
else:
# Try using the input directly as a video ID
if len(url) == 11:
video_id = url
else:
return "Error: Invalid YouTube URL or video ID. Please provide a valid YouTube URL."
# Get transcript
transcript = YouTubeTranscriptApi.get_transcript(video_id)
formatter = TextFormatter()
formatted_transcript = formatter.format_transcript(transcript)
# Get video metadata
response = requests.get(
f"https://www.youtube.com/oembed?url=http://www.youtube.com/watch?v={video_id}&format=json")
metadata = response.json()
title = metadata.get("title", "Unknown title")
author = metadata.get("author_name", "Unknown author")
if summarize and formatted_transcript:
# For long transcripts, break into chunks
max_chunk_length = 4000
if len(formatted_transcript) > max_chunk_length:
chunks = [formatted_transcript[i:i+max_chunk_length]
for i in range(0, len(formatted_transcript), max_chunk_length)]
summary = f"Video: \"{title}\" by {author}\n\nTranscript summary (extracted from {len(chunks)} segments):\n\n"
# Return first and last parts of transcript instead of full summary for long videos
summary += f"Beginning of transcript:\n{chunks[0][:500]}...\n\n"
summary += f"End of transcript:\n{chunks[-1][-500:]}"
return summary
else:
return f"Video: \"{title}\" by {author}\n\nFull transcript:\n\n{formatted_transcript}"
else:
return f"Video: \"{title}\" by {author}\n\nFull transcript:\n\n{formatted_transcript}"
except Exception as e:
return f"Error extracting YouTube transcript: {str(e)}"
import base64
from io import BytesIO
from PIL import Image
import json
@tool
def analyze_image(image_url: str, analysis_type: str = "caption") -> str:
"""Analyze an image from a URL and provide captions, tags, or comprehensive analysis.
Args:
image_url: URL of the image to analyze
analysis_type: Type of analysis to perform (options: "caption", "tags", "objects", "comprehensive")
"""
if not image_url:
return "Error: Please provide a valid image URL."
analysis_type = analysis_type.lower()
valid_types = ["caption", "tags", "objects", "comprehensive"]
if analysis_type not in valid_types:
return f"Error: analysis_type must be one of {', '.join(valid_types)}."
try:
# Download the image
response = requests.get(image_url, timeout=10)
response.raise_for_status()
# Process image based on analysis type
if analysis_type == "caption":
return caption_image(response.content)
elif analysis_type == "tags":
return tag_image(response.content)
elif analysis_type == "objects":
return detect_objects(response.content)
elif analysis_type == "comprehensive":
# Perform all analyses
caption_result = caption_image(response.content)
tags_result = tag_image(response.content)
objects_result = detect_objects(response.content)
return f"IMAGE ANALYSIS SUMMARY:\n\n{caption_result}\n\n{tags_result}\n\n{objects_result}"
# If none of the above conditions are met, return an error string
return "Error: Unknown analysis type or failed to process image."
except requests.exceptions.RequestException as e:
return f"Error downloading image: {str(e)}"
except Exception as e:
return f"Error analyzing image: {str(e)}"
def caption_image(image_content: bytes) -> str:
"""Generate captions for an image using Hugging Face API."""
try:
# Check if we have HF API key in environment
hf_api_key = os.getenv("HUGGINGFACE_API_TOKEN")
if hf_api_key:
# Use Hugging Face API with auth
api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
headers = {"Authorization": f"Bearer {hf_api_key}"}
# Convert image to base64
image_b64 = base64.b64encode(image_content).decode("utf-8")
payload = {"inputs": {"image": image_b64}}
response = requests.post(api_url, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
return f"CAPTION: {result[0]['generated_text']}"
else:
return f"CAPTION: {result['generated_text'] if 'generated_text' in result else str(result)}"
else:
# Fallback to public API
return caption_image_public(image_content)
else:
# No API key, use public endpoint
return caption_image_public(image_content)
except Exception as e:
return f"Error generating caption: {str(e)}"
def caption_image_public(image_content: bytes) -> str:
"""Caption image using a public API endpoint."""
try:
# Convert to PIL image for processing
image = Image.open(BytesIO(image_content))
# Resize if too large (to avoid timeouts)
max_size = 1024
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = (int(image.size[0] * ratio), int(image.size[1] * ratio))
image = image.resize(new_size, Image.LANCZOS)
# Convert back to bytes
buffer = BytesIO()
image.save(buffer, format="JPEG")
image_bytes = buffer.getvalue()
# Call public API
api_url = "https://api.toonify.photos/caption" # Example public API
files = {"image": ("image.jpg", image_bytes, "image/jpeg")}
response = requests.post(api_url, files=files, timeout=15)
if response.status_code == 200:
result = response.json()
return f"CAPTION: {result.get('caption', 'No caption generated')}"
else:
return "CAPTION: Could not generate caption (API error)"
except Exception as e:
return f"CAPTION: Image appears to be a {detect_simple_content(image_content)}"
def tag_image(image_content: bytes) -> str:
"""Generate tags for an image."""
try:
# Check if we have HF API key in environment
hf_api_key = os.getenv("HUGGINGFACE_API_TOKEN")
if hf_api_key:
# Use Hugging Face API for image tagging
api_url = "https://api-inference.huggingface.co/models/google/vit-base-patch16-224"
headers = {"Authorization": f"Bearer {hf_api_key}"}
# Send image as binary content
response = requests.post(api_url, headers=headers, data=image_content)
if response.status_code == 200:
tags = response.json()
# Format results
formatted_tags = "\n".join([f"- {tag['label']} ({tag['score']:.2%})" for tag in tags[:10]])
return f"TAGS:\n{formatted_tags}"
else:
# Fallback to basic detection
return f"TAGS:\n- {detect_simple_content(image_content)}"
else:
# No API key
return f"TAGS:\n- {detect_simple_content(image_content)}"
except Exception as e:
return f"Error generating tags: {str(e)}"
def detect_objects(image_content: bytes) -> str:
"""Detect objects in an image."""
try:
# Check if we have HF API key in environment
hf_api_key = os.getenv("HUGGINGFACE_API_TOKEN")
if hf_api_key:
# Use Hugging Face API for object detection
api_url = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50"
headers = {"Authorization": f"Bearer {hf_api_key}"}
# Send image as binary content
response = requests.post(api_url, headers=headers, data=image_content)
if response.status_code == 200:
objects = response.json()
# Count objects by label
object_counts = {}
for obj in objects:
label = obj["label"]
if label in object_counts:
object_counts[label] += 1
else:
object_counts[label] = 1
# Format results
formatted_objects = "\n".join([f"- {count}Γ {label}" for label, count in object_counts.items()])
return f"OBJECTS DETECTED:\n{formatted_objects}"
else:
return "OBJECTS: Could not detect objects (API error)"
else:
return "OBJECTS: API key required for object detection"
except Exception as e:
return f"Error detecting objects: {str(e)}"
def detect_simple_content(image_content: bytes) -> str:
"""Simple function to detect basic image type when APIs are not available."""
try:
image = Image.open(BytesIO(image_content))
width, height = image.size
aspect = width / height
# Very simple heuristics
if aspect > 2:
return "panorama or banner image"
elif aspect < 0.5:
return "tall or portrait image"
elif width < 300 or height < 300:
return "small thumbnail or icon"
else:
return "photograph or general image"
except:
return "image (could not analyze format)"
import contextlib
from io import StringIO
@tool
def python_repl(code: str) -> str:
"""Execute Python code and return the result.
Args:
code: Python code to execute
"""
if not code or not isinstance(code, str):
return "Error: Please provide valid Python code as a string."
try:
# Create a secure dict of globals with limited builtins
restricted_globals = {
"__builtins__": {
k: __builtins__[k] for k in [
'abs', 'all', 'any', 'bool', 'chr', 'dict', 'dir', 'divmod',
'enumerate', 'filter', 'float', 'format', 'frozenset', 'hash',
'hex', 'int', 'isinstance', 'len', 'list', 'map', 'max',
'min', 'oct', 'ord', 'pow', 'print', 'range', 'repr',
'round', 'set', 'slice', 'sorted', 'str', 'sum', 'tuple', 'type', 'zip'
] if k in __builtins__
}
}
# Add common math functions
import math
for name in ['sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'sqrt',
'log', 'log10', 'exp', 'pi', 'e', 'ceil', 'floor', 'degrees', 'radians']:
if hasattr(math, name):
restricted_globals[name] = getattr(math, name)
# Local namespace for variables
local_vars = {}
# Capture stdout
stdout_capture = StringIO()
# Execute the code
with contextlib.redirect_stdout(stdout_capture):
try:
# Try to evaluate as an expression first
result = eval(code, restricted_globals, local_vars)
stdout_content = stdout_capture.getvalue().strip()
if stdout_content:
return f"{stdout_content}\nResult: {result}"
return f"Result: {result}"
except SyntaxError:
# Not an expression, try executing as statements
exec(code, restricted_globals, local_vars)
stdout_content = stdout_capture.getvalue().strip()
if stdout_content:
return stdout_content
return "Code executed successfully with no output."
except Exception as e:
return f"Error executing code: {type(e).__name__}: {str(e)}"
|