Spaces:
Runtime error
Runtime error
File size: 17,236 Bytes
541377c 9fced79 541377c 554ef85 541377c 9fced79 541377c 554ef85 9fced79 541377c 9fced79 541377c 59e0000 541377c 9fced79 541377c 59e0000 541377c 9fced79 541377c 9fced79 541377c 9fced79 541377c 9fced79 541377c 9fced79 541377c 554ef85 9fced79 541377c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain.tools.retriever import create_retriever_tool
from langchain_core.tools import BaseTool
from langgraph.graph import START, StateGraph, MessagesState, END
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain.vectorstores import VectorStore
from langchain_core.language_models import BaseChatModel
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
# from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_groq import ChatGroq
from basic_tools import *
from typing import List
import numpy as np
from datetime import datetime, timedelta
from sentence_transformers import SentenceTransformer
import torch
import heapq
from utils import *
os.environ['HF_HOME'] = os.path.join(
os.path.expanduser('~'), '.cache', "huggingface")
# load the system prompt from the file
with open("./system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
class BasicAgent:
tools: List[BaseTool] = [multiply,
multiply, add, subtract, divide, modulus,
wiki_search, web_search, arxiv_search,
python_repl, analyze_image,
date_filter, analyze_content,
step_by_step_reasoning, translate_text
]
def __init__(self, embeddings: HuggingFaceEmbeddings, vector_store: VectorStore, llm: BaseChatModel):
self.embedding_model = embeddings
self.vector_store = vector_store
ret = self.vector_store.as_retriever()
self.retriever = create_retriever_tool(
retriever=ret, #type: ignore
name="Question Search", #type: ignore
description="A tool to retrieve similar questions from a vector store." #type: ignore
)
self.llm = llm.bind_tools(self.tools)
self.graph = self.build_graph()
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Search for similar content to enhance context - LIMIT TO 1 DOCUMENT ONLY
similar_docs = self.vector_store.similarity_search(question, k=1) # Reduced from 3 to 1
# Create enhanced context with relevant past information
enhanced_context = question
if (similar_docs):
context_additions = []
for doc in similar_docs:
# Extract relevant information from similar documents
content = doc.page_content
if "Question:" in content and "Final answer:" in content:
q = content.split("Question:")[1].split("Final answer:")[0].strip()
a = content.split("Final answer:")[1].split("Timestamp:", 1)[0].strip()
# Truncate long contexts
if len(q) > 200:
q = q[:200] + "..."
if len(a) > 300:
a = a[:300] + "..."
# Only add if it's not exactly the same question
if not question.lower() == q.lower():
context_additions.append(f"Related Q: {q}\nRelated A: {a}")
if context_additions:
enhanced_context = (
"Consider this relevant information first:\n\n" +
"\n\n".join(context_additions[:1]) + # Only use the first context addition
"\n\nNow answering this question: " + question
)
# Process with the graph
input_messages = [HumanMessage(content=enhanced_context)]
result = self.graph.invoke({"messages": input_messages})
answer = result["messages"][-1].content
# Store this Q&A pair for future reference
self._cache_result(question, answer)
print(f"Agent returning answer (first 50 chars): {answer[:50]}...")
return answer
def _cache_result(self, question: str, answer: str) -> None:
"""Cache the question and answer in the vector store"""
timestamp = datetime.now().isoformat()
content = f"Question: {question}\nFinal answer: {answer}\nTimestamp: {timestamp}"
# Create document with metadata
doc = Document(
page_content=content,
metadata={
"question": question,
"timestamp": timestamp,
"type": "qa_pair"
}
)
# Add to vector store
self.vector_store.add_documents([doc])
print(f"Cached new Q&A in vector store")
# Build graph function
def build_graph(self):
"""Build the graph with context enhancement"""
from langgraph.graph import END
def context_enhanced_generation(state: MessagesState):
"""Node that enhances context with relevant information"""
query = str(state["messages"][-1].content)
# Retrieve relevant information
similar_docs = self.vector_store.similarity_search(query, k=3)
# Extract relevant context
context = ""
if similar_docs:
context_pieces = []
for doc in similar_docs:
content = doc.page_content
# Extract the relevant parts
if "Question:" in content:
context_pieces.append(content)
if context_pieces:
context = "Relevant context:\n\n" + "\n\n".join(context_pieces) + "\n\n"
# Create enhanced messages
enhanced_messages = state["messages"].copy()
if context:
# Add context to system message if it exists, otherwise add a new one
system_message_found = False
for i, msg in enumerate(enhanced_messages):
if isinstance(msg, SystemMessage):
enhanced_messages[i] = SystemMessage(content=f"{msg.content}\n\n{context}")
system_message_found = True
break
if not system_message_found:
enhanced_messages.insert(0, SystemMessage(content=context))
# Process with LLM
response = self.llm.invoke(enhanced_messages)
return {"messages": state["messages"] + [response]}
# Tool handling node
tool_node = ToolNode(self.tools)
# Build graph with tool handling
builder = StateGraph(MessagesState)
builder.add_node("context_enhanced_generation", context_enhanced_generation)
builder.add_node("tools", tool_node)
# Connect nodes
builder.set_entry_point("context_enhanced_generation")
builder.add_conditional_edges(
"context_enhanced_generation",
tools_condition,
{
"tools": "tools",
END: END # Using END as the key instead of None
}
)
builder.add_edge("tools", "context_enhanced_generation")
return builder.compile()
@staticmethod
def get_llm(provider: str="groq") -> BaseChatModel:
# Load environment variables from .env file
if provider == "groq":
# Groq https://console.groq.com/docs/models
# optional : qwen-qwq-32b gemma2-9b-it
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
# TODO: Add huggingface endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
model="Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
elif provider == "openai_local":
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="http://localhost:11432/v1", # default LM Studio endpoint
api_key="not-used", # required by interface but ignored #type: ignore
# model="mistral-nemo-instruct-2407",
model="meta-llama-3.1-8b-instruct",
temperature=0.2
)
elif provider == "openai":
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
model="gpt-4o",
temperature=0.2,
)
else:
raise ValueError(
"Invalid provider. Choose 'groq' or 'huggingface'.")
return llm
def manage_memory(self, max_documents: int = 1000, max_age_days: int = 30) -> None:
"""
Manage memory by pruning old or less useful entries from the vector store.
This implementation works with various vector store types, not just FAISS.
Args:
max_documents: Maximum number of documents to keep
max_age_days: Remove documents older than this many days
"""
print(f"Starting memory management...")
# Get all documents from the vector store
try:
# For vector stores that have a get_all_documents method
if hasattr(self.vector_store, "get_all_documents"):
all_docs = self.vector_store.get_all_documents()
all_ids = [doc.metadata.get("id", i) for i, doc in enumerate(all_docs)]
# For FAISS and similar implementations
elif hasattr(self.vector_store, "docstore") and hasattr(self.vector_store, "index_to_docstore_id"):
# Access docstore in a more robust way
if hasattr(self.vector_store.docstore, "docstore"):
all_ids = list(self.vector_store.index_to_docstore_id.values())
all_docs = []
for doc_id in all_ids:
doc = self.vector_store.docstore.search(doc_id)
if doc:
all_docs.append(doc)
else:
# Fallback for newer FAISS implementations
try:
all_docs = []
all_ids = []
# Get all index positions
for i in range(self.vector_store.index.ntotal):
# Map index position to document ID
if i in self.vector_store.index_to_docstore_id:
doc_id = self.vector_store.index_to_docstore_id[i]
doc = self.vector_store.docstore.search(doc_id)
if doc:
all_docs.append(doc)
all_ids.append(doc_id)
except Exception as e:
print(f"Error accessing FAISS documents: {e}")
all_docs = []
all_ids = []
else:
print("Warning: Vector store doesn't expose required attributes for memory management")
return
except Exception as e:
print(f"Error accessing vector store documents: {e}")
return
if not all_docs:
print("No documents found in vector store")
return
print(f"Retrieved {len(all_docs)} documents for scoring")
# Score each document based on recency and other factors
scored_docs = []
cutoff_date = datetime.now() - timedelta(days=max_age_days)
for i, doc in enumerate(all_docs):
doc_id = all_ids[i] if i < len(all_ids) else i
# Extract timestamp from content or metadata
timestamp = None
if hasattr(doc, "metadata") and doc.metadata and "timestamp" in doc.metadata:
try:
timestamp = datetime.fromisoformat(doc.metadata["timestamp"])
except (ValueError, TypeError):
pass
# If no timestamp in metadata, try to extract from content
if not timestamp and hasattr(doc, "page_content") and "Timestamp:" in doc.page_content:
try:
timestamp_str = doc.page_content.split("Timestamp:")[-1].strip().split('\n')[0]
timestamp = datetime.fromisoformat(timestamp_str)
except (ValueError, TypeError):
timestamp = datetime.now() - timedelta(days=max_age_days+1)
# If still no timestamp, use a default
if not timestamp:
timestamp = datetime.now() - timedelta(days=max_age_days+1)
# Calculate age score (newer is better)
age_factor = max(0.0, min(1.0, (timestamp - cutoff_date).total_seconds() /
(datetime.now() - cutoff_date).total_seconds()))
# Calculate importance score - could be based on various factors
importance_factor = 1.0
# If document has been accessed often, increase importance
if hasattr(doc, "metadata") and doc.metadata and "access_count" in doc.metadata:
importance_factor += min(1.0, doc.metadata["access_count"] / 10)
# Create combined score (higher = more valuable to keep)
total_score = (0.7 * age_factor) + (0.3 * importance_factor)
# Add to priority queue (negative for max-heap behavior)
heapq.heappush(scored_docs, (-total_score, i, doc))
# Select top documents to keep
docs_to_keep = []
for _ in range(min(max_documents, len(scored_docs))):
if scored_docs:
_, _, doc = heapq.heappop(scored_docs)
docs_to_keep.append(doc)
# Only rebuild if we're actually pruning some documents
if len(docs_to_keep) < len(all_docs):
print(f"Memory management: Keeping {len(docs_to_keep)} documents out of {len(all_docs)}")
# Create a new vector store with the same type as the current one
vector_store_type = type(self.vector_store)
# Different approaches based on vector store type
if hasattr(vector_store_type, "from_documents"):
# Most langchain vector stores support this method
new_vector_store = vector_store_type.from_documents(
docs_to_keep,
embedding=self.embedding_model
)
self.vector_store = new_vector_store
print(f"Vector store rebuilt with {len(docs_to_keep)} documents")
elif hasattr(vector_store_type, "from_texts"):
# For vector stores that use from_texts
texts = [doc.page_content for doc in docs_to_keep]
metadatas = [doc.metadata if hasattr(doc, "metadata") else {} for doc in docs_to_keep]
new_vector_store = vector_store_type.from_texts(
texts=texts,
embedding=self.embedding_model,
metadatas=metadatas
)
self.vector_store = new_vector_store
print(f"Vector store rebuilt with {len(docs_to_keep)} documents")
else:
print("Warning: Could not determine how to rebuild the vector store")
print(f"Vector store type: {vector_store_type.__name__}")
def capture_tool_result(self, tool_name: str, tool_input: str, tool_output: str) -> None:
"""
Capture knowledge gained from tool usage for future reference
Args:
tool_name: Name of the tool used
tool_input: Input/query sent to the tool
tool_output: Result returned by the tool
"""
# Format the content
timestamp = datetime.now().isoformat()
content = (
f"Tool Knowledge\n"
f"Tool: {tool_name}\n"
f"Query: {tool_input}\n"
f"Result: {tool_output}\n"
f"Timestamp: {timestamp}"
)
# Create document with metadata
doc = Document(
page_content=content,
metadata={
"type": "tool_knowledge",
"tool": tool_name,
"timestamp": timestamp,
"query": tool_input
}
)
# Add to vector store
self.vector_store.add_documents([doc])
print(f"Captured knowledge from tool '{tool_name}' in vector store")
|