Spaces:
Running
Running
import streamlit as st | |
import openai | |
from utils.constants import model_family_mapping, model_name_mapping | |
from utils.utils import PitchPerfect, pdf_loader | |
st.set_page_config( | |
page_title = "Pitch Perfect", | |
page_icon = "π", | |
layout = "wide" | |
) | |
def initialize_session_state(): | |
if 'api_configured' not in st.session_state: | |
st.session_state.api_configured = False | |
if 'pitch_perfect' not in st.session_state: | |
st.session_state.pitch_perfect = None | |
initialize_session_state() | |
with st.sidebar: | |
st.title("Model API Configuration") | |
model_options = [ | |
"GPT-4o mini", | |
"GPT-4o", | |
"o1", | |
"o3-mini", | |
"Deepseek-V3", | |
"Deepseek-r1", | |
"Mistral Small 24B", | |
"LLaMa 3.3 70B", | |
"DeepSeek R1 Distill", | |
"Mistral 7B v0.3" | |
] | |
selected_model = st.selectbox("Select which LLM to use", model_options, key = "selected_model") | |
model_name = model_name_mapping.get(selected_model) | |
model_family = model_family_mapping.get(selected_model) | |
if model_family == "gpt": | |
token = st.text_input("OpenAI API Key", type="password", key="openai_key") | |
else: | |
token = st.text_input("Hugging Face Token", type="password", key="hf_token") | |
if token != "": | |
if st.button("Initialize with the provided keys"): | |
try: | |
st.session_state.pitch_perfect = PitchPerfect(model = model_name, model_family = model_family, token = token) | |
if st.session_state.pitch_perfect.client == "INVALID": | |
st.error(st.session_state.pitch_perfect.error) | |
else: | |
st.session_state.api_configured = True | |
st.success("Successfully configured the API clients with provided keys!") | |
except Exception as e: | |
st.error(f"Error initializing API clients: {str(e)}") | |
st.session_state.api_configured = False | |
if st.session_state.api_configured: | |
upload_cv = st.file_uploader("Upload CV in PDF format", type=["pdf"]) | |
if upload_cv is not None: | |
st.success(f"File uploaded successfully: {upload_cv.name}") | |
temp_file = "./temp.pdf" | |
with open(temp_file, "wb") as file: | |
file.write(upload_cv.getvalue()) | |
file_name = upload_cv.name | |
cv_data = pdf_loader(temp_file) | |
if not st.session_state.api_configured: | |
st.warning("Please configure the models in the sidebar to proceed") | |
st.stop() | |
st.title("Pitch Perfect") | |
st.subheader("A cutting-edge app that crafts the perfect cover letter, tailored to land your dream job effortlessly!") | |
col1, col2 = st.columns(2) | |
# with col1: | |
# upload_cv = st.file_uploader("Upload CV in PDF format", type=["pdf"]) | |
# if upload_cv is not None: | |
# st.success(f"File uploaded successfully: {upload_cv.name}") | |
# temp_file = "./temp.pdf" | |
# with open(temp_file, "wb") as file: | |
# file.write(upload_cv.getvalue()) | |
# file_name = upload_cv.name | |
# cv_data = pdf_loader(temp_file) | |
with col1: | |
job_title = st.text_input("Job Title", key="job_title") | |
with col2: | |
company_name = st.text_input("Company Name", key="company_name") | |
# if upload_cv: | |
# st.write(cv_data) | |
job_description = st.text_area("Please paste the entire job description here:") | |
if st.button("Generate Cover Letter"): | |
with st.spinner("Generating Cover Letter....."): | |
client = st.session_state.pitch_perfect | |
cover_letter, reason = client.generate_cover_letter(job_title = job_title, | |
company = company_name, | |
job_desc = job_description, | |
cv_data = cv_data) | |
st.success("Cover Letter Generated") | |
st.markdown(cover_letter) | |
with st.expander("Model Reasoning:"): | |
st.write(reason) |