SIMCI / app.py
SebastianBravo's picture
More scores and logo
3a7ffad
raw
history blame
7.39 kB
import os
import utils
import numpy as np
import gradio as gr
import tensorflow as tf
import matplotlib.pyplot as plt
from ttictoc import tic,toc
from urllib.request import urlretrieve
# '''--------------------------- Preprocesamiento ----------------------------'''
# tic()
# 3D U-Net\
if not os.path.exists("unet.h5"):
urlretrieve("https://dl.dropboxusercontent.com/s/ay5q8caqzlad7h5/unet.h5?dl=0", "unet.h5")
if not os.path.exists("resnet_50_23dataset.pth"):
urlretrieve("https://dl.dropboxusercontent.com/s/otxsgx3e31d5h9i/resnet_50_23dataset.pth?dl=0", "resnet_50_23dataset.pth")
path_3d_unet = 'unet.h5'
with tf.device("cpu:0"):
model_unet = utils.import_3d_unet(path_3d_unet)
# # Cargar imagen
# img = utils.load_img('F:/Downloads/ADNI_002_S_0295_MR_MP-RAGE__br_raw_20070525135721811_1_S32678_I55275.nii')
# # Extraer cerebro
# with tf.device("cpu:0"):
# brain = utils.brain_stripping(img, model_unet)
# print(toc())
# '''---------------------------- Procesamiento ------------------------------'''
# # Med net
# weight_path = 'resnet_50_23dataset.pth'
# device_ids = [0]
# mednet = utils.create_mednet(weight_path, device_ids)
# # Extraer caracter铆sticas
# features = utils.get_features(brain, mednet)
def load_img(file):
sitk, array = utils.load_img(file.name)
# Redimenci贸n
mri_image = np.transpose(array)
mri_image = np.append(mri_image, np.zeros((192-mri_image.shape[0],256,256,)), axis=0)
# Rotaci贸n
mri_image = mri_image.astype(np.float32)
mri_image = np.rot90(mri_image, axes=(1,2))
return sitk, mri_image
def show_img(img, mri_slice):
fig = plt.figure()
plt.imshow(img[mri_slice,:,:], cmap='gray')
return fig, gr.update(visible=True)
# def show_brain(brain, brain_slice):
# fig = plt.figure()
# plt.imshow(brain[brain_slice,:,:], cmap='gray')
# return fig, gr.update(visible=True)
def process_img(img, brain_slice):
with tf.device("cpu:0"):
brain = utils.brain_stripping(img, model_unet)
fig, update = show_img(brain, brain_slice)
return brain, fig, update
def clear():
return gr.File.update(value=None), gr.Plot.update(value=None), gr.update(visible=False)
# gr.Textbox.update(placeholder='Ingrese nombre del paciente'), gr.Number.update(value=0),
# demo = gr.Interface(fn=load_img,
# inputs=gr.File(file_count="single", file_type=[".nii"]),
# outputs=gr.Plot()
# # outputs='text'
# )
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
with gr.Row():
# gr.HTML(r"""<center><img src='https://user-images.githubusercontent.com/66338785/233529518-33e8bcdb-146f-49e8-94c4-27d6529ce4f7.png' width="30%" height="30%"></center>""")
gr.HTML(r"""<center><img src='https://user-images.githubusercontent.com/66338785/233531457-f368e04b-5099-42a8-906d-6f1250ea0f1e.png' width="40%" height="40%"></center>""")
# gr.Markdown("""
# # SIMCI
# Interfaz de SIMCI
# """)
# Inputs
with gr.Row():
with gr.Column(scale=1):
with gr.Tab("Personal data"):
# Objeto para subir archivo nifti
input_name = gr.Textbox(placeholder='Ingrese nombre del paciente', label='Name')
input_sex = gr.Dropdown(["Male", "Female"], label="Sex")
input_age = gr.Number(label='Age')
with gr.Tab("Clinical data"):
input_MMSE = gr.Number(label='MMSE')
input_GDSCALE = gr.Number(label='GDSCALE')
input_CDR = gr.Number(label='Global CDR')
input_FAQ = gr.Number(label='FAQ Total Score')
input_NPI_Q = gr.Number(label='NPI-Q Total Score')
input_file = gr.File(file_count="single", file_type=[".nii"], label="Archivo Imagen MRI")
with gr.Row():
# Bot贸n para cargar imagen
load_img_button = gr.Button(value="Load")
# Bot贸n para borrar
clear_button = gr.Button(value="Clear")
# Bot贸n para procesar imagen
process_button = gr.Button(value="Procesar")
# Outputs
with gr.Column(scale=1):
# Plot para im谩gen original
plot_img_original = gr.Plot(label="Imagen MRI original")
# Slider para im谩gen original
mri_slider = gr.Slider(minimum=0,
maximum=192,
value=100,
step=1,
label="MRI Slice",
visible=False)
# Plot para im谩gen procesada
plot_brain = gr.Plot(label="Imagen MRI procesada")
# Slider para im谩gen procesada
brain_slider = gr.Slider(minimum=0,
maximum=192,
value=100,
step=1,
label="MRI Slice",
visible=False)
# componentes =
# Variables
original_input_sitk = gr.State()
original_input_img = gr.State()
brain_img = gr.State()
# Cambios
# Cargar imagen nueva
input_file.change(load_img,
input_file,
[original_input_sitk, original_input_img])
# Mostrar imagen nueva
load_img_button.click(show_img,
[original_input_img, mri_slider],
[plot_img_original, mri_slider])
# Limpiar campos
clear_button.click(fn=clear,
outputs=[input_file, plot_img_original, mri_slider])
# Actualizar imagen original
mri_slider.change(show_img,
[original_input_img, mri_slider],
[plot_img_original,mri_slider])
# Procesar imagen
process_button.click(fn=process_img,
inputs=[original_input_sitk, brain_slider],
outputs=[brain_img,plot_brain,brain_slider])
# Actualizar imagen procesada
brain_slider.change(show_img,
[brain_img, brain_slider],
[plot_brain,brain_slider])
if __name__ == "__main__":
demo.launch()
# # Visualizaci贸n resultados
# mri_slice = 100
# # Plot Comparaci贸n m谩scaras
# fig, axs = plt.subplots(1,2)
# fig.subplots_adjust(bottom=0.15)
# fig.suptitle('Comparaci贸n M谩scaras Obtenidas')
# axs[0].set_title('MRI original')
# axs[0].imshow(img[mri_slice,:,:],cmap='gray')
# axs[1].set_title('Cerebro extraido con 3D U-Net')
# axs[1].imshow(brain[mri_slice,:,:],cmap='gray')
# # Slider para cambiar slice
# ax_slider = plt.axes([0.15, 0.05, 0.75, 0.03])
# mri_slice_slider = Slider(ax_slider, 'Slice', 0, 192, 100, valstep=1)
# def update(val):
# mri_slice = mri_slice_slider.val
# axs[0].imshow(img[:,:,mri_slice],cmap='gray')
# axs[1].imshow(brain[mri_slice,:,:],cmap='gray')
# # Actualizar plot comparaci贸n m谩scaras
# mri_slice_slider.on_changed(update)