SIMCI / app.py
SebastianBravo's picture
Added new features
7d8644d
raw
history blame
12.1 kB
import os
import utils
import pickle
import numpy as np
import gradio as gr
import tensorflow as tf
import matplotlib.pyplot as plt
from ttictoc import tic,toc
from keras.models import load_model
from urllib.request import urlretrieve
'''--------------------------- Descarga de modelos ----------------------------'''
# 3D U-Net
if not os.path.exists("unet.h5"):
urlretrieve("https://dl.dropboxusercontent.com/s/ay5q8caqzlad7h5/unet.h5?dl=0", "unet.h5")
# Med3D
if not os.path.exists("resnet_50_23dataset.pth"):
urlretrieve("https://dl.dropboxusercontent.com/s/otxsgx3e31d5h9i/resnet_50_23dataset.pth?dl=0", "resnet_50_23dataset.pth")
# Clasificador de im谩gen SVM
if not os.path.exists("svm_model.pickle"):
urlretrieve("https://dl.dropboxusercontent.com/s/n3tb3r6oyf06xfx/svm_model.pickle?dl=0", "svm_model.pickle")
# Nivel de riesgo
if not os.path.exists("mlp_probabilidad.h5"):
urlretrieve("https://dl.dropboxusercontent.com/s/78fjlg374mvjygd/mlp_probabilidad.h5?dl=0", "mlp_probabilidad.h5")
# Scaler para scores
if not os.path.exists("scaler.pickle"):
urlretrieve("https://dl.dropboxusercontent.com/s/ow6pe4k45r3xkbl/scaler.pickle?dl=0", "scaler.pickle")
path_3d_unet = 'unet.h5'
weight_path = 'resnet_50_23dataset.pth'
svm_path = "svm_model.pickle"
prob_model_path = "mlp_probabilidad.h5"
scaler_path = "scaler.pickle"
'''---------------------------- Carga de modelos ------------------------------'''
# 3D U-Net
with tf.device("cpu:0"):
model_unet = utils.import_3d_unet(path_3d_unet)
# MedNet
device_ids = [0]
mednet_model = utils.create_mednet(weight_path, device_ids)
# SVM model
svm_model = pickle.load(open(svm_path, 'rb'))
# Nivel de riesgo
with tf.device("cpu:0"):
prob_model = load_model(prob_model_path)
# Scaler
scaler = pickle.load(open(scaler_path, 'rb'))
'''-------------------------------- Funciones ---------------------------------'''
def load_img(file):
sitk, array = utils.load_img(file.name)
# Redimenci贸n
mri_image = np.transpose(array)
mri_image = np.append(mri_image, np.zeros((192-mri_image.shape[0],256,256,)), axis=0)
# Rotaci贸n
mri_image = mri_image.astype(np.float32)
mri_image = np.rot90(mri_image, axes=(1,2))
return sitk, mri_image
def show_img(img, mri_slice, update):
fig = plt.figure()
plt.imshow(img[mri_slice,:,:], cmap='gray')
if update == True:
return fig, gr.update(visible=True), gr.update(visible=True)
else:
return fig
# def show_brain(brain, brain_slice):
# fig = plt.figure()
# plt.imshow(brain[brain_slice,:,:], cmap='gray')
# return fig, gr.update(visible=True)
def process_img(img, brain_slice):
# progress(None,desc="Processing...")
with tf.device("cpu:0"):
brain = utils.brain_stripping(img, model_unet)
fig, update_slider, _ = show_img(brain, brain_slice, update=True)
return brain, fig, update_slider, gr.update(visible=True)
def get_diagnosis(brain_img, age, MMSE, GDSCALE, CDR, FAQ, NPI, sex):
# Extracci贸n de caracter铆sticas de imagen
features = utils.get_features(brain_img, mednet_model)
# Clasificaci贸n de imagen
label_img = np.array([svm_model.predict(features)])
if sex == "Male":
sex_dum = 1
else:
sex_dum = 0
scores = np.array([age, MMSE, GDSCALE, CDR, FAQ, NPI, sex_dum, label_img])
print(scores)
# Normalizaci贸n de scores
scores_norm = scaler.transform(scores.reshape(1,-1))
print(scores_norm)
with tf.device("cpu:0"):
# Probabilidad de tener MCI
prob = prob_model.predict(scores_norm)[0,0]
# Probabilidad de tener MCI
print(prob)
diagnosis = f"The patient has a probability of {(100*prob):.2f}% of having MCI"
return gr.update(value=diagnosis)
def clear():
return gr.File.update(value=None), gr.Plot.update(value=None), gr.update(visible=False), gr.Plot.update(value=None), gr.update(visible=False), gr.update(value="The diagnosis will show here..."), gr.update(visible=False), gr.update(visible=False)
'''--------------------------------- Interfaz ---------------------------------'''
with gr.Blocks(theme=gr.themes.Base()) as demo:
with gr.Row():
# gr.HTML(r"""<center><img src='https://user-images.githubusercontent.com/66338785/233529518-33e8bcdb-146f-49e8-94c4-27d6529ce4f7.png' width="30%" height="30%"></center>""")
gr.HTML(r"""<center><img src='https://user-images.githubusercontent.com/66338785/233531457-f368e04b-5099-42a8-906d-6f1250ea0f1e.png' width="40%" height="40%"></center>""")
# gr.Markdown("""
# # SIMCI
# Interfaz de SIMCI
# """)
# Inputs
with gr.Row():
with gr.Column(variant="panel", scale=1):
gr.Markdown('<h2 style="text-align: center; color:#235784;">Patient Information</h2>')
with gr.Tab("Personal data"):
# Objeto para subir archivo nifti
input_name = gr.Textbox(placeholder='Enter the patient name', label='Patient name')
input_age = gr.Number(label='Age')
input_phone_num = gr.Number(label='Phone number')
input_emer_name = gr.Textbox(placeholder='Enter the emergency contact name', label='Emergency contact name')
input_emer_phone_num = gr.Number(label='Emergency contact name phone number')
input_sex = gr.Dropdown(["Male", "Female"], label="Sex")
with gr.Tab("Clinical data"):
input_MMSE = gr.Slider(minimum=0,
maximum=30,
value=0,
step=1,
label="MMSE total score")
input_GDSCALE = gr.Slider(minimum=0,
maximum=12,
value=0,
step=1,
label="GDSCALE total score")
input_CDR = gr.Slider(minimum=0,
maximum=3,
value=0,
step=0.5,
label="Global CDR")
input_FAQ = gr.Slider(minimum=0,
maximum=30,
value=0,
step=1,
label="FAQ total score")
input_NPI_Q = gr.Slider(minimum=0,
maximum=30,
value=0,
step=1,
label="NPI-Q total score")
with gr.Tab("Vital Signs"):
input_Diastolic_blood_pressure = gr.Number(label='Diastolic Blood Pressure(mm Hg)')
input_Systolic_blood_pressure = gr.Number(label='Systolic Blood Pressure(mm Hg)')
input_Body_heigth = gr.Number(label='Body heigth (cm)')
input_Body_weight = gr.Number(label='Body weigth (kg)')
input_Heart_rate = gr.Number(label='Heart rate (bpm)')
input_Respiratory_rate = gr.Number(label='Respiratory rate (bpm)')
input_Body_temperature = gr.Number(label='Body temperature (掳C)')
input_Pluse_oximetry = gr.Number(label='Pluse oximetry (%)')
with gr.Tab("Medications"):
input_medications = gr.Textbox(label='Medications', lines=5)
input_allergies = gr.Textbox(label='Allergies', lines=5)
input_file = gr.File(file_count="single", label="MRI Image File (.nii)")
with gr.Row():
# Bot贸n para cargar imagen
load_img_button = gr.Button(value="Load")
# Bot贸n para borrar
clear_button = gr.Button(value="Clear")
# Bot贸n para procesar imagen
process_button = gr.Button(value="Process MRI", visible=False, variant="primary")
# Bot贸n para obtener diagnostico
diagnostic_button = gr.Button(value="Get diagnosis", visible=False, variant="primary")
# Outputs
with gr.Column(variant="panel", scale=1):
gr.Markdown('<h2 style="text-align: center; color:#235784;">MRI visualization</h2>')
with gr.Box():
gr.Markdown('<h4 style="color:#235784;">Loaded MRI</h4>')
# Plot para im谩gen original
plot_img_original = gr.Plot(show_label=False)
# Slider para im谩gen original
mri_slider = gr.Slider(minimum=0,
maximum=192,
value=100,
step=1,
label="MRI Slice",
visible=False)
with gr.Box():
gr.Markdown('<h4 style="color:#235784;">Proccessed MRI</h4>')
# Plot para im谩gen procesada
plot_brain = gr.Plot(show_label=False, visible=True)
# Slider para im谩gen procesada
brain_slider = gr.Slider(minimum=0,
maximum=192,
value=100,
step=1,
label="MRI Slice",
visible=False)
with gr.Box():
gr.Markdown('<h2 style="text-align: center; color:#235784;">Diagnosis</h2>')
# Texto del diagnostico
diagnosis_text = gr.Textbox(label="Diagnosis",interactive=False, placeholder="The diagnosis will show here...")
# componentes =
# Variables
original_input_sitk = gr.State()
original_input_img = gr.State()
brain_img = gr.State()
update_true = gr.State(True)
update_false = gr.State(False)
# Cambios
# Cargar imagen nueva
input_file.change(load_img,
input_file,
[original_input_sitk, original_input_img])
# Mostrar imagen nueva
load_img_button.click(show_img,
[original_input_img, mri_slider, update_true],
[plot_img_original, mri_slider, process_button])
# Actualizar imagen original
mri_slider.change(show_img,
[original_input_img, mri_slider, update_false],
[plot_img_original])
# Procesar imagen
process_button.click(fn=process_img,
inputs=[original_input_sitk, brain_slider],
outputs=[brain_img,plot_brain,brain_slider, diagnostic_button])
# Actualizar imagen procesada
brain_slider.change(show_img,
[brain_img, brain_slider, update_false],
[plot_brain])
# Actualizar diagnostico
diagnostic_button.click(fn=get_diagnosis,
inputs=[brain_img, input_age, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_sex],
outputs=[diagnosis_text])
# Limpiar campos
clear_button.click(fn=clear,
outputs=[input_file, plot_img_original, mri_slider, plot_brain, brain_slider, diagnosis_text, process_button, diagnostic_button])
if __name__ == "__main__":
# demo.queue(concurrency_count=20)
demo.launch()