SaritMeshesha's picture
upload app
b2706cf verified
raw
history blame
19.9 kB
import json
import os
import uuid
from datetime import datetime
from typing import Dict, List, Optional
import pandas as pd
import streamlit as st
from datasets import load_dataset
from dotenv import load_dotenv
from langgraph_agent import DataAnalystAgent, DatasetManager
# Load environment variables
load_dotenv()
# Set up page config
st.set_page_config(
page_title="πŸ€– LangGraph Data Analyst Agent",
layout="wide",
page_icon="πŸ€–",
initial_sidebar_state="expanded",
)
# Custom CSS for styling
st.markdown(
"""
<style>
/* Main theme colors */
:root {
--primary-color: #1f77b4;
--secondary-color: #ff7f0e;
--success-color: #2ca02c;
--error-color: #d62728;
--warning-color: #ff9800;
--background-color: #0e1117;
--card-background: #262730;
}
/* Custom styling for the main container */
.main-header {
background: linear-gradient(90deg, #1f77b4 0%, #ff7f0e 100%);
padding: 2rem 1rem;
border-radius: 10px;
margin-bottom: 2rem;
text-align: center;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-header h1 {
margin: 0;
font-size: 2.5rem;
font-weight: 700;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
.main-header p {
margin: 0.5rem 0 0 0;
font-size: 1.2rem;
opacity: 0.9;
}
/* Card styling */
.info-card {
background: var(--card-background);
padding: 1.5rem;
border-radius: 10px;
border-left: 4px solid var(--primary-color);
margin: 1rem 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.success-card {
background: linear-gradient(90deg,
rgba(44, 160, 44, 0.1) 0%,
rgba(44, 160, 44, 0.05) 100%);
border-left: 4px solid var(--success-color);
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
.error-card {
background: linear-gradient(90deg,
rgba(214, 39, 40, 0.1) 0%,
rgba(214, 39, 40, 0.05) 100%);
border-left: 4px solid var(--error-color);
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
.memory-card {
background: linear-gradient(90deg,
rgba(255, 127, 14, 0.1) 0%,
rgba(255, 127, 14, 0.05) 100%);
border-left: 4px solid var(--secondary-color);
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
/* Chat message styling */
.user-message {
background: linear-gradient(90deg,
rgba(31, 119, 180, 0.1) 0%,
rgba(31, 119, 180, 0.05) 100%);
padding: 1rem;
border-radius: 10px;
margin: 0.5rem 0;
border-left: 4px solid var(--primary-color);
}
.assistant-message {
background: linear-gradient(90deg,
rgba(255, 127, 14, 0.1) 0%,
rgba(255, 127, 14, 0.05) 100%);
padding: 1rem;
border-radius: 10px;
margin: 0.5rem 0;
border-left: 4px solid var(--secondary-color);
}
.session-info {
background: var(--card-background);
padding: 1rem;
border-radius: 8px;
margin: 0.5rem 0;
border: 1px solid rgba(255, 255, 255, 0.1);
font-size: 0.9rem;
}
/* Animation for thinking indicator */
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.thinking-indicator {
animation: pulse 2s infinite;
}
</style>
""",
unsafe_allow_html=True,
)
# API configuration
def get_api_configuration():
"""Get API configuration from environment variables."""
api_key = os.environ.get("NEBIUS_API_KEY") or os.environ.get("OPENAI_API_KEY")
if not api_key:
st.markdown(
"""
<div class="error-card">
<h3>πŸ”‘ API Key Configuration Required</h3>
<h4>For Local Development:</h4>
<ol>
<li>Create a <code>.env</code> file in your project directory</li>
<li>Add your API key: <code>NEBIUS_API_KEY=your_api_key_here</code></li>
<li>Or use OpenAI: <code>OPENAI_API_KEY=your_api_key_here</code></li>
<li>Restart the application</li>
</ol>
<h4>For Deployment:</h4>
<ol>
<li>Set environment variable <code>NEBIUS_API_KEY</code> or
<code>OPENAI_API_KEY</code></li>
<li>Restart your application</li>
</ol>
</div>
""",
unsafe_allow_html=True,
)
st.stop()
return api_key
# Initialize the agent
@st.cache_resource
def get_agent(api_key: str) -> DataAnalystAgent:
"""Initialize and cache the LangGraph agent."""
return DataAnalystAgent(api_key=api_key)
# Load dataset
@st.cache_data
def load_bitext_dataset():
"""Load and cache the Bitext dataset."""
try:
dataset = load_dataset(
"bitext/Bitext-customer-support-llm-chatbot-training-dataset"
)
df = pd.DataFrame(dataset["train"])
return df
except Exception as e:
st.error(f"Error loading dataset: {e}")
return None
# Session management functions
def initialize_session():
"""Initialize session state variables."""
if "session_id" not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
if "conversation_history" not in st.session_state:
st.session_state.conversation_history = []
if "user_profile" not in st.session_state:
st.session_state.user_profile = {}
if "current_thread_id" not in st.session_state:
st.session_state.current_thread_id = st.session_state.session_id
def create_new_session():
"""Create a new session with a new thread ID."""
st.session_state.session_id = str(uuid.uuid4())
st.session_state.current_thread_id = st.session_state.session_id
st.session_state.conversation_history = []
st.session_state.user_profile = {}
def format_conversation_message(role: str, content: str, timestamp: str = None):
"""Format a conversation message for display."""
if timestamp is None:
timestamp = datetime.now().strftime("%H:%M:%S")
if role == "human":
return f"""
<div class="user-message">
<strong>πŸ‘€ You ({timestamp}):</strong><br>
{content}
</div>
"""
else:
return f"""
<div class="assistant-message">
<strong>πŸ€– Agent ({timestamp}):</strong><br>
{content}
</div>
"""
def display_user_profile(profile: Dict):
"""Display user profile information."""
if not profile:
return
with st.expander("🧠 What I Remember About You", expanded=False):
col1, col2 = st.columns(2)
with col1:
st.markdown("**Your Interests:**")
interests = profile.get("interests", [])
if interests:
for interest in interests:
st.write(f"β€’ {interest}")
else:
st.write("_No interests recorded yet_")
st.markdown("**Expertise Level:**")
expertise = profile.get("expertise_level", "beginner")
st.write(f"β€’ {expertise.title()}")
with col2:
st.markdown("**Your Preferences:**")
preferences = profile.get("preferences", {})
if preferences:
for key, value in preferences.items():
st.write(f"β€’ {key}: {value}")
else:
st.write("_No preferences recorded yet_")
st.markdown("**Recent Query Topics:**")
query_history = profile.get("query_history", [])
if query_history:
for query in query_history[-3:]: # Show last 3
st.write(f"β€’ {query[:50]}...")
else:
st.write("_No query history yet_")
def main():
# Custom header
st.markdown(
"""
<div class="main-header">
<h1>πŸ€– LangGraph Data Analyst Agent</h1>
<p>Intelligent Analysis with Memory & Recommendations</p>
</div>
""",
unsafe_allow_html=True,
)
# Initialize session
initialize_session()
# Get API configuration
api_key = get_api_configuration()
# Initialize agent
agent = get_agent(api_key)
# Load dataset
with st.spinner("πŸ”„ Loading dataset..."):
df = load_bitext_dataset()
if df is None:
st.markdown(
"""
<div class="error-card">
<h3>❌ Dataset Loading Failed</h3>
<p>Failed to load dataset. Please check your connection and try again.</p>
</div>
""",
unsafe_allow_html=True,
)
return
# Success message
st.markdown(
f"""
<div class="success-card">
<h3>βœ… System Ready</h3>
<p>Dataset loaded with <strong>{len(df):,}</strong> records.
LangGraph agent initialized with memory.</p>
</div>
""",
unsafe_allow_html=True,
)
# Sidebar configuration
with st.sidebar:
st.markdown("## βš™οΈ Session Management")
# Session ID management
st.markdown("### πŸ†” Session Control")
col1, col2 = st.columns(2)
with col1:
if st.button("πŸ†• New Session", use_container_width=True):
create_new_session()
st.rerun()
with col2:
if st.button("πŸ”„ Refresh", use_container_width=True):
st.rerun()
# Display session info
st.markdown(
f"""
<div class="session-info">
<strong>Current Session:</strong><br>
<code>{st.session_state.current_thread_id[:8]}...</code><br>
<strong>Messages:</strong> {len(st.session_state.conversation_history)}
</div>
""",
unsafe_allow_html=True,
)
# Custom session ID input
st.markdown("### πŸ”— Join Existing Session")
custom_thread_id = st.text_input(
"Enter Session ID:",
placeholder="Enter full session ID to join...",
help="Use this to resume a previous conversation",
)
if st.button("πŸ”— Join Session") and custom_thread_id:
st.session_state.current_thread_id = custom_thread_id
# Load conversation history for this thread
history = agent.get_conversation_history(custom_thread_id)
st.session_state.conversation_history = history
# Load user profile for this thread
profile = agent.get_user_profile(custom_thread_id)
st.session_state.user_profile = profile
st.success(f"Joined session: {custom_thread_id[:8]}...")
st.rerun()
st.markdown("---")
# Dataset info
st.markdown("### πŸ“Š Dataset Info")
col1, col2 = st.columns(2)
with col1:
st.metric("πŸ“ Records", f"{len(df):,}")
with col2:
st.metric("πŸ“‚ Categories", len(df["category"].unique()))
st.metric("🎯 Intents", len(df["intent"].unique()))
# Quick examples
st.markdown("### πŸ’‘ Try These Queries")
example_queries = [
"What are the most common categories?",
"Show me examples of billing issues",
"Summarize the refund category",
"What should I query next?",
"What do you remember about me?",
]
for query in example_queries:
if st.button(f"πŸ’¬ {query}", key=f"example_{hash(query)}"):
st.session_state.pending_query = query
st.rerun()
# Main content area
# Display user profile
if st.session_state.user_profile:
display_user_profile(st.session_state.user_profile)
# Dataset information in expandable section
with st.expander("πŸ“Š Dataset Information", expanded=False):
st.markdown("### Dataset Details")
metrics_col1, metrics_col2, metrics_col3, metrics_col4 = st.columns(4)
with metrics_col1:
st.metric("Total Records", f"{len(df):,}")
with metrics_col2:
st.metric("Columns", len(df.columns))
with metrics_col3:
st.metric("Categories", len(df["category"].unique()))
with metrics_col4:
st.metric("Intents", len(df["intent"].unique()))
st.markdown("### Sample Data")
st.dataframe(df.head(), use_container_width=True)
st.markdown("### Category Distribution")
st.bar_chart(df["category"].value_counts())
# User input section
st.markdown("## πŸ’¬ Chat with the Agent")
# Handle pending query from sidebar
has_pending_query = hasattr(st.session_state, "pending_query")
if has_pending_query:
user_question = st.session_state.pending_query
delattr(st.session_state, "pending_query")
else:
user_question = st.text_input(
"Ask your question:",
placeholder="e.g., What are the most common customer issues?",
key="user_input",
help="Ask about statistics, examples, insights, or request recommendations",
)
# Submit button
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
submit_clicked = st.button("πŸš€ Send Message", use_container_width=True)
# Process query
if (submit_clicked or has_pending_query) and user_question:
# Add user message to local history
timestamp = datetime.now().strftime("%H:%M:%S")
st.session_state.conversation_history.append(
{"role": "human", "content": user_question, "timestamp": timestamp}
)
# Show thinking indicator
thinking_placeholder = st.empty()
thinking_placeholder.markdown(
"""
<div class="thinking-indicator">
<div class="info-card">
βš™οΈ <strong>Agent is thinking...</strong>
Processing your query through the LangGraph workflow.
</div>
</div>
""",
unsafe_allow_html=True,
)
try:
# Invoke the agent
result = agent.invoke(user_question, st.session_state.current_thread_id)
# Get the last assistant message
assistant_response = None
for msg in reversed(result["messages"]):
if (
hasattr(msg, "content")
and msg.content
and not isinstance(msg, type(user_question))
):
# Check if this is an AI message (not human or tool message)
if not hasattr(msg, "tool_calls") or not msg.tool_calls:
if "human" not in str(type(msg)).lower():
content = msg.content
# Clean up Qwen model thinking tags
if "<think>" in content and "</think>" in content:
# Extract only the part after </think>
parts = content.split("</think>")
if len(parts) > 1:
content = parts[1].strip()
assistant_response = content
break
if not assistant_response:
assistant_response = "I processed your query but couldn't generate a response. Please try again."
# Add assistant response to local history
st.session_state.conversation_history.append(
{
"role": "assistant",
"content": assistant_response,
"timestamp": datetime.now().strftime("%H:%M:%S"),
}
)
# Update user profile from agent state
if result.get("user_profile"):
st.session_state.user_profile = result["user_profile"]
except Exception as e:
error_msg = f"Sorry, I encountered an error: {str(e)}"
st.session_state.conversation_history.append(
{
"role": "assistant",
"content": error_msg,
"timestamp": datetime.now().strftime("%H:%M:%S"),
}
)
finally:
thinking_placeholder.empty()
# Clear the input and rerun to show new messages
st.rerun()
# Display conversation
if st.session_state.conversation_history:
st.markdown("## πŸ’­ Conversation")
# Display messages
for i, message in enumerate(st.session_state.conversation_history):
message_html = format_conversation_message(
message["role"], message["content"], message.get("timestamp", "")
)
st.markdown(message_html, unsafe_allow_html=True)
# Add separator except for last message
if i < len(st.session_state.conversation_history) - 1:
st.markdown("---")
# Action buttons
col1, col2, col3 = st.columns(3)
with col1:
if st.button("πŸ—‘οΈ Clear Chat"):
st.session_state.conversation_history = []
st.rerun()
with col2:
if st.button("πŸ’Ύ Export Chat"):
chat_data = {
"session_id": st.session_state.current_thread_id,
"timestamp": datetime.now().isoformat(),
"conversation": st.session_state.conversation_history,
"user_profile": st.session_state.user_profile,
}
st.download_button(
label="πŸ“₯ Download JSON",
data=json.dumps(chat_data, indent=2),
file_name=f"chat_export_{st.session_state.current_thread_id[:8]}.json",
mime="application/json",
)
with col3:
if st.button("πŸ€– Get Recommendations"):
st.session_state.pending_query = "What should I query next?"
st.rerun()
# Instructions
with st.expander("πŸ“‹ How to Use This Agent", expanded=False):
st.markdown(
"""
### 🎯 Query Types Supported:
**Structured Queries (Quantitative):**
- "How many records are in each category?"
- "Show me 5 examples of billing issues"
- "What are the most common intents?"
**Unstructured Queries (Qualitative):**
- "Summarize the refund category"
- "What patterns do you see in payment issues?"
- "Analyze customer sentiment in billing conversations"
**Memory & Recommendations:**
- "What do you remember about me?"
- "What should I query next?"
- "Advise me what to explore"
### 🧠 Memory Features:
- **Session Persistence:** Your conversations are saved across page reloads
- **User Profile:** The agent learns about your interests and preferences
- **Query History:** Past queries influence future recommendations
- **Cross-Session:** Use session IDs to resume conversations later
### πŸ”§ Advanced Features:
- **Multi-Agent Architecture:** Separate agents for different query types
- **Tool Usage:** Dynamic tool selection based on your needs
- **Interactive Recommendations:** Collaborative query refinement
"""
)
if __name__ == "__main__":
main()