import torch.nn as nn import torch.nn.functional as F import torch class CombinationModule(nn.Module): def __init__(self, c_low, c_up, batch_norm=False, group_norm=False, instance_norm=False): super(CombinationModule, self).__init__() if batch_norm: self.up = nn.Sequential(nn.Conv2d(c_low, c_up, kernel_size=3, padding=1, stride=1), nn.BatchNorm2d(c_up), nn.ReLU(inplace=True)) self.cat_conv = nn.Sequential(nn.Conv2d(c_up*2, c_up, kernel_size=1, stride=1), nn.BatchNorm2d(c_up), nn.ReLU(inplace=True)) elif group_norm: self.up = nn.Sequential(nn.Conv2d(c_low, c_up, kernel_size=3, padding=1, stride=1), nn.GroupNorm(num_groups=32, num_channels=c_up), nn.ReLU(inplace=True)) self.cat_conv = nn.Sequential(nn.Conv2d(c_up * 2, c_up, kernel_size=1, stride=1), nn.GroupNorm(num_groups=32, num_channels=c_up), nn.ReLU(inplace=True)) elif instance_norm: self.up = nn.Sequential(nn.Conv2d(c_low, c_up, kernel_size=3, padding=1, stride=1), nn.InstanceNorm2d(num_features=c_up), nn.ReLU(inplace=True)) self.cat_conv = nn.Sequential(nn.Conv2d(c_up * 2, c_up, kernel_size=1, stride=1), nn.InstanceNorm2d(num_features=c_up), nn.ReLU(inplace=True)) else: self.up = nn.Sequential(nn.Conv2d(c_low, c_up, kernel_size=3, padding=1, stride=1), nn.ReLU(inplace=True)) self.cat_conv = nn.Sequential(nn.Conv2d(c_up*2, c_up, kernel_size=1, stride=1), nn.ReLU(inplace=True)) def forward(self, x_low, x_up): x_low = self.up(F.interpolate(x_low, x_up.shape[2:], mode='bilinear', align_corners=False)) return self.cat_conv(torch.cat((x_up, x_low), 1))