|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import os
|
|
|
|
def load_data(filename):
|
|
pts = []
|
|
f = open(filename, "rb")
|
|
for line in f:
|
|
pts.append(float(line.strip()))
|
|
f.close()
|
|
return pts
|
|
|
|
dataset = 'spinal'
|
|
weights_path = 'weights_'+dataset
|
|
|
|
|
|
|
|
train_pts = load_data(os.path.join(weights_path, 'train_loss.txt'))
|
|
val_pts = load_data(os.path.join(weights_path, 'val_loss.txt'))
|
|
|
|
def draw_loss():
|
|
x = np.linspace(0, len(train_pts), len(train_pts))
|
|
plt.plot(x,train_pts,'ro-',label='train')
|
|
plt.plot(x,val_pts,'bo-',label='val')
|
|
|
|
plt.legend(loc='upper right')
|
|
|
|
plt.xlabel('Epochs')
|
|
plt.ylabel('Loss')
|
|
|
|
plt.show()
|
|
|
|
|
|
def draw_loss_ap():
|
|
ap05_pts = load_data(os.path.join(weights_path, 'ap_05_list.txt'))
|
|
ap07_pts = load_data(os.path.join(weights_path, 'ap_07_list.txt'))
|
|
|
|
x = np.linspace(0,len(train_pts),len(train_pts))
|
|
x1 = np.linspace(0, len(train_pts), len(ap05_pts))
|
|
|
|
fig, ax1 = plt.subplots()
|
|
|
|
color = 'tab:red'
|
|
ax1.set_xlabel('Epochs')
|
|
ax1.set_ylabel('Loss', color=color)
|
|
ax1.plot(x, train_pts, 'ro-',label='train')
|
|
ax1.plot(x, val_pts, 'bo-',label='val')
|
|
ax1.tick_params(axis='y', labelcolor=color)
|
|
plt.legend(loc = 'lower right')
|
|
ax2 = ax1.twinx()
|
|
color = 'tab:blue'
|
|
ax2.set_ylabel('AP', color=color)
|
|
ax2.plot(x1, ap05_pts, 'go-',label='AP@05')
|
|
ax2.plot(x1, ap07_pts, 'yo-', label='AP@07')
|
|
ax2.tick_params(axis='y', labelcolor=color)
|
|
|
|
fig.tight_layout()
|
|
plt.legend(loc = 'upper right')
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
draw_loss()
|
|
|