File size: 5,757 Bytes
a19d827 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import numpy as np
from numpy import random
import cv2
def rescale_pts(pts, down_ratio):
return np.asarray(pts, np.float32)/float(down_ratio)
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, pts):
for t in self.transforms:
img, pts = t(img, pts)
return img, pts
class ConvertImgFloat(object):
def __call__(self, img, pts):
return img.astype(np.float32), pts.astype(np.float32)
class RandomContrast(object):
def __init__(self, lower=0.5, upper=1.5):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
def __call__(self, img, pts):
if random.randint(2):
alpha = random.uniform(self.lower, self.upper)
img *= alpha
return img, pts
class RandomBrightness(object):
def __init__(self, delta=32):
assert delta >= 0.0
assert delta <= 255.0
self.delta = delta
def __call__(self, img, pts):
if random.randint(2):
delta = random.uniform(-self.delta, self.delta)
img += delta
return img, pts
class SwapChannels(object):
def __init__(self, swaps):
self.swaps = swaps
def __call__(self, img):
img = img[:, :, self.swaps]
return img
class RandomLightingNoise(object):
def __init__(self):
self.perms = ((0, 1, 2), (0, 2, 1),
(1, 0, 2), (1, 2, 0),
(2, 0, 1), (2, 1, 0))
def __call__(self, img, pts):
if random.randint(2):
swap = self.perms[random.randint(len(self.perms))]
shuffle = SwapChannels(swap)
img = shuffle(img)
return img, pts
class PhotometricDistort(object):
def __init__(self):
self.pd = RandomContrast()
self.rb = RandomBrightness()
self.rln = RandomLightingNoise()
def __call__(self, img, pts):
img, pts = self.rb(img, pts)
if random.randint(2):
distort = self.pd
else:
distort = self.pd
img, pts = distort(img, pts)
img, pts = self.rln(img, pts)
return img, pts
class Expand(object):
def __init__(self, max_scale = 1.5, mean = (0.5, 0.5, 0.5)):
self.mean = mean
self.max_scale = max_scale
def __call__(self, img, pts):
if random.randint(2):
return img, pts
h,w,c = img.shape
ratio = random.uniform(1,self.max_scale)
y1 = random.uniform(0, h*ratio-h)
x1 = random.uniform(0, w*ratio-w)
if np.max(pts[:,0])+int(x1)>w-1 or np.max(pts[:,1])+int(y1)>h-1: # keep all the pts
return img, pts
else:
expand_img = np.zeros(shape=(int(h*ratio), int(w*ratio),c),dtype=img.dtype)
expand_img[:,:,:] = self.mean
expand_img[int(y1):int(y1+h), int(x1):int(x1+w)] = img
pts[:, 0] += int(x1)
pts[:, 1] += int(y1)
return expand_img, pts
class RandomSampleCrop(object):
def __init__(self, ratio=(0.5, 1.5), min_win = 0.9):
self.sample_options = (
# using entire original input image
None,
# sample a patch s.t. MIN jaccard w/ obj in .1,.3,.4,.7,.9
# (0.1, None),
# (0.3, None),
(0.7, None),
(0.9, None),
# randomly sample a patch
(None, None),
)
self.ratio = ratio
self.min_win = min_win
def __call__(self, img, pts):
height, width ,_ = img.shape
while True:
mode = random.choice(self.sample_options)
if mode is None:
return img, pts
for _ in range(50):
current_img = img
current_pts = pts
w = random.uniform(self.min_win*width, width)
h = random.uniform(self.min_win*height, height)
if h/w<self.ratio[0] or h/w>self.ratio[1]:
continue
y1 = random.uniform(height-h)
x1 = random.uniform(width-w)
rect = np.array([int(y1), int(x1), int(y1+h), int(x1+w)])
current_img = current_img[rect[0]:rect[2], rect[1]:rect[3], :]
current_pts[:, 0] -= rect[1]
current_pts[:, 1] -= rect[0]
pts_new = []
for pt in current_pts:
if any(pt)<0 or pt[0]>current_img.shape[1]-1 or pt[1]>current_img.shape[0]-1:
continue
else:
pts_new.append(pt)
return current_img, np.asarray(pts_new, np.float32)
class RandomMirror_w(object):
def __call__(self, img, pts):
_,w,_ = img.shape
if random.randint(2):
img = img[:,::-1,:]
pts[:,0] = w-pts[:,0]
return img, pts
class RandomMirror_h(object):
def __call__(self, img, pts):
h,_,_ = img.shape
if random.randint(2):
img = img[::-1,:,:]
pts[:,1] = h-pts[:,1]
return img, pts
class Resize(object):
def __init__(self, h, w):
self.dsize = (w,h)
def __call__(self, img, pts):
h,w,c = img.shape
pts[:, 0] = pts[:, 0]/w*self.dsize[0]
pts[:, 1] = pts[:, 1]/h*self.dsize[1]
img = cv2.resize(img, dsize=self.dsize)
return img, np.asarray(pts) |