medical-llm-chatbot / langgraph_graph.py
SankethHonavar's picture
Deploy LLM Medical Chatbot with FAISS
76b04ec
from retriever import retrieve_relevant_docs
from langchain_core.prompts import PromptTemplate
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
from langchain_google_genai import ChatGoogleGenerativeAI
# LLM used for both doc chain and fallback answer
llm = ChatGoogleGenerativeAI(model="models/gemini-1.5-flash", temperature=0.3)
# Define the structured prompt
prompt = PromptTemplate.from_template("""
You are a helpful medical assistant. Use only the dataset context below to answer.
Context:
{context}
Question: {input}
If you are unsure, say "Sorry, I couldn't find an answer based on the dataset." Do not guess.
""")
# Build document chain and retrieval chain
document_chain = create_stuff_documents_chain(llm, prompt)
retriever_chain = create_retrieval_chain(retrieve_relevant_docs(), document_chain)
# Expose chain for Streamlit app
graph = retriever_chain
# Manual fallback function if needed
def generate_answer(query: str, context: str) -> str:
if not context.strip():
return "Sorry, I couldn't find an answer based on the dataset."
fallback_llm = ChatGoogleGenerativeAI(model="models/gemini-1.5-flash", temperature=0.3)
fallback_prompt = f"""
You are a helpful medical assistant. Use only the dataset context below to answer.
Context:
{context}
Question: {query}
If you are unsure, say "Sorry, I couldn't find an answer based on the dataset." Do not guess.
"""
response = fallback_llm.invoke(fallback_prompt)
return response.content.strip()