import gradio as gr from mock_model import predict def run_app(amount, stage, industry, lead_score, emails, meetings, close_gap): input_data = { "amount": amount, "stage": stage, "industry": industry, "lead_score": lead_score, "emails_last_7_days": emails, "meetings_last_30_days": meetings, "close_date_gap": close_gap } result = predict(input_data, None, None, None) return result["score"], result["confidence"], result["risk"], result["recommendation"] demo = gr.Interface( fn=run_app, title="AI-Powered Deal Qualification Engine (Demo)", inputs=[ gr.Number(label="Amount (USD)", value=50000), gr.Dropdown(["Prospecting", "Proposal/Price Quote", "Negotiation", "Closed Won", "Closed Lost"], label="Stage"), gr.Textbox(label="Industry", value="Software"), gr.Number(label="Lead Score", value=85), gr.Number(label="Emails in Last 7 Days", value=3), gr.Number(label="Meetings in Last 30 Days", value=2), gr.Number(label="Close Date Gap (days)", value=10) ], outputs=[ gr.Number(label="AI Score (0–100)"), gr.Number(label="Confidence (0–1)"), gr.Textbox(label="Risk Level"), gr.Textbox(label="Recommendation") ] ) if __name__ == "__main__": demo.launch()